Waste Management Division PO Box 95, 29 Hazen Drive Concord, NH 03302						
Type of Submittal (Check One-Most Applicable)						
 Work Scope Reimbursement Request UST Facility Report AST Facility Report 	 Remedial Action Remedial Action Plan Bid Plans and Specifications Remedial Action Implementation Report Treatment System and POE O&M Activity and Use Restriction 					
 Emergency/Initial Response Action Groundwater Quality Assessment 	Temporary Surface Water Discharge Permit					
 ☐ Groundwater Quality Assessment ☐ Initial Site Characterization ⊠ Preliminary Environmental Assessment Site Investigation Report GMZ Delineation Source Area Investigation Data Submittal Annual Summary Report ☐ Unsolicited Environmental Sampling Notification ☐ Closure Documentation 						
Preliminary Environmental Assessment New Hampshire Army National Guard Armory Peterborough, New Hampshire NHDES No. 199001027 UST Facility No. 0113328 Leaking Underground Storage Tank Project Number 20433 Prepared For:						
20 Central Square, 2 nd Floor Keene, New Hampshire 03431 (603) 357-0557 Mr. J. B. Mack						
Prepared By: GZA GeoEnvironmental, Inc 380 Harvey Road Manchester, New Hampshire 03103 (603) 232-8753 Mr. Donald N. Kirkland, P.E.						
May 12, 200	09					

Recommended Risk Category (Check One)						
1. Immediate Human Health Risk	4. Surface Water Impact	7. Alternate Water Available/Low				
(Impacted water supply well, etc.)		Level Groundwater Contamin-				
	5. No Alternate Water Available/No	ation (< 1,000 x AGQS)				
2. Potential Human Health Risk	Existing Wells in Area					
(Water supply well within 1000' or		8. No AGQS Violation/No Source				
Site within SWPA)	6. Alternate Water Available/High	Remaining				
	Level Groundwater Contamination					
3. Free Product or Source Hazard	(> 1,000 x AGQS)	Closure Recommended				

PRELIMINARY ENVIRONMENTAL ASSESSMENT NEW HAMPSHIRE ARMY NATIONAL GUARD ARMORY 25 ELM STREET PETERBOROUGH, NEW HAMPSHIRE

PREPARED FOR:

Southwest Region Planning Commission Keene, New Hampshire

PREPARED BY: GZA GeoEnvironmental, Inc. Manchester, New Hampshire

May 2009 File No. 04.0024843.01

Copyright © 2009 GZA GeoEnvironmental, Inc.

Engineers and Scientists

May 12, 2009 File No. 04.0024843.01

Mr. J.B. Mack Southwest Region Planning Commission 20 Central Square, Second Floor Keene, New Hampshire 03431

Re: Preliminary Environmental Assessment New Hampshire Army National Guard Armory 25 Elm Street (Site) Peterborough, New Hampshire

Dear Mr. Mack:

380 Harvey Road Manchester New Hampshire 03103-3347 603-623-3600 FAX 603-624-9463 www.gza.com GZA GeoEnvironmental, Inc. (GZA) is pleased to submit the attached Preliminary Environmental Assessment report to Southwest Region Planning Commission (SWRPC) for the above-referenced Site. The objective of GZA's investigation was to further evaluate the *recognized environmental conditions* previously identified in Louis Berger Group's (LBG) Phase I Environmental Site Assessment (ESA) report dated January 2008.¹ Our work included a building materials survey, subsurface explorations consisting of test pits and the advancement of test borings with groundwater monitoring wells installation, and soil and groundwater quality sampling. This report summarizes the findings of GZA's Preliminary Environmental Assessment and is subject to the Limitations outlined in *Appendix A*.

We have appreciated the opportunity to work with you on this project. Should you have any questions, please call the undersigned at (603) 623-3600.

Very truly yours,

GZA GEOENVIRONMENTAL, INC.

Donald N. Kirkland, P.E. Project Manager

Steven R. Lamb P.G., C.G.W.P Principal

Martal & asselin'

Michael B. Asselin Consultant/Reviewer

DNK/SRL/MBA:kr P:\04Jobs\04.0024843.00\04.0024843.01\Report\SWRPCFinal 051209.DOC

Attachment: Preliminary Environmental Assessment

¹ Environmental Site Assessment by LBG titled "NH Army National Guard Armory Site, Parcel ID U023-025-000, Peterborough, New Hampshire: Phase I Environmental Site Assessment," dated January 2008.

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	BACKGROUND SITE INFORMATION	1
	2.1 SITE DESCRIPTION	1
	2.2 BRIEF SITE HISTORY	2
3.0	SUMMARY OF WORK PERFORMED	2
	3.1 BUILDING MATERIALS SURVEY	2
	3.2 TEST PIT PROGRAM WITH ADDITIONAL SURFICIAL SOIL SAMPLING	3
	3.3 TEST BORINGS WITH MONITORING WELL INSTALLATIONS	5
	3.3.1 Test Boring/Well Construction and Soil Sampling Methodology	5
	3.3.2 Summary of Test Boring Observations	5
	3.4 GROUNDWATER LEVEL MEASUREMENTS	6
	3.5 GROUNDWATER SAMPLING	6
	3.6 ANALYTICAL RESULTS	6
	3.6.1 Soil Analytical Results	6
	3.6.2 Groundwater Analytical Results	7
	3.7 DATA VALIDATION OF ANALYTICAL RESULTS	8
4.0	FINDINGS AND CONCLUSIONS	8
5.0	RECOMMENDATIONS	9

TABLES

TABLE 1	SUMMARY OF DETECTED COMPOUNDS IN SOIL
TABLE 2	GROUNDWATER ELEVATION DATA
TABLE 3	SUMMARY OF DETECTED COMPOUNDS IN GROUNDWATER
TABLE 4	GROUNDWATER QUALITY SUMMARY

FIGURES

FIGURE 1	LOCUS PLAN
FIGURE 2	SITE AND GROUNDWATER CONTOUR PLAN

APPENDICES

APPENDIX A	LIMITATIONS
APPENDIX B	TEST PIT, TEST BORING AND WELL CONSTRUCTION LOGS
APPENDIX C	BUILDING MATERIALS SURVEY
APPENDIX D	SOIL ANALYTICAL RESULTS
APPENDIX E	GROUNDWATER ANALYTICAL RESULTS

Page 1

1.0 INTRODUCTION

This report presents the results of a Preliminary Environmental Assessment conducted by GZA GeoEnvironmental, Inc. (GZA) on behalf of the Southwest Region Planning Commission (SWRPC) at the property referred to as the New Hampshire Army National Guard Armory located at 25 Elm Street in Peterborough, New Hampshire (Site). The current Work Scope was based on Louis Berger Group's (LBG) findings included in their Phase I Environmental Site Assessment (ESA) report dated January 2008 and subsequent discussions with SWRPC and the New Hampshire Department of Environmental Services (NHDES). Investigations at the Site have been conducted as part of a Brownfields grant awarded to SWRPC by U.S. Environmental Protection Agency (EPA) in 2007 for inventory of known and suspected Brownfield sites in the SWRPC's 35 municipalities. The objective of GZA's Work Scope was to further evaluate the *recognized environmental conditions* previously identified in LBG's January 2009 ESA of the Site.

Authorization to proceed on this project was granted by SWRPC in accordance with our proposed Work Scope and Budget Estimate dated October 21, 2008. Work associated with this investigation was performed in general accordance with our June 16, 2008 Agreement For Consulting Services with SWRPC.

This report presents GZA's and LBG's field observations, results, and opinions. Our report is subject to modification if GZA or any other party obtains subsequent information. The following is subject to the Limitations presented in **Appendix A**.

2.0 BACKGROUND SITE INFORMATION

2.1 SITE DESCRIPTION

LBG's ESA describes the property as "consisting of a cleared area of approximately 3.2 acres in size. The Subject Property is currently owned by the New Hampshire Army National Guard (NHANG) and contains a brick-masonry armory building, a brick masonry motor vehicle storage building, a small Butler steel building, as well as, two storage containers. The Subject Property also contains an area contained within a chain-link fence used for the purposes of storing NHANG vehicles and equipment."

"The Subject Property is identified on Parcel ID U023-025-000 located to the west of Elm Street in the Town of Peterborough, Hillsborough County, New Hampshire. The address of the Subject Property is given as 25 Elm Street. The Subject Property is located in the front of the Town of Peterborough's Highway Garage and to the north of the former Peterborough Ford Mercury (on Route 101). The Subject Property is approximately 1/4 mile south of the Nubanusit River."

Ground cover at the Subject Property consists predominantly of grass, with pavement and gravel driveways around the two buildings. There are no roads currently on the Subject Property. Vehicular access to the Site is via Elm Street at the east side of the property and the property has a number of driveways and parking areas within it. The main drive servicing the Armory Site also serves as the access to the Highway Garage parcel to the west.

2.2 BRIEF SITE HISTORY

LBG's ESA further describes the property as follows: "The only structures located on the premises are the two brick-mortared buildings, one small, as well as, two storage containers. The main armory building appears to be in relatively good repair, having been built in 1955. The motor vehicle storage building, constructed in 1949, was the original armory facility."

LBG identified the following recognized environmental conditions (RECs) (*italicized for convenience to the reader*) associated with the Subject Property:

- 1. "Former underground storage tanks ("UST') which undertook subsequent remediation activities."
- 2. "The site is a small quantity Hazardous Waste Generator ("HWG") with hazardous materials stored on site."
- 3. *"The currently utilized underground storage tank."*
- 4. "A number of side-gradient properties and one upgradient property have had documented releases of oil or hazardous materials that have the potential to migrate via groundwater or the adjacent Nubanusit River wetland complex toward the Subject Property. These include the upgradient parcels at 36 Elm Street and the side-gradient parcels at 145 Dublin Road. The REC's noted with these parcels range from registered Hazardous Waste Generator potential and UST registrations to full site remediation activities in the past and on-going."
- 5. "The Subject Property contains a number of small debris piles including one containing metal shelving and another with some mortar rubble and cinder block and woody debris remnants. Portions of the site are utilized for the storage and maintenance of military vehicles."

3.0 SUMMARY OF WORK PERFORMED

3.1 BUILDING MATERIALS SURVEY

On November 14, 2008, GZA accompanied a representative of the NHANG to conduct a limited inventory of universal waste within both the Armory Building and Motor Vehicle Storage Building. GZA's inventory can be found in the attached *Table 1*. GZA's inventory did not include an assessment of asbestos-containing building materials (ACBM) as this was recently completed by RPF Associates, Inc. (RPF) of Northwood New Hampshire in December 2007. Please refer to RPF's February 11, 2008 document (*Appendix C*) for an assessment of ACBM.² GZA was not provided documentation of asbestos abatement. Our work scope also did not include the collection of samples to be analyzed for lead paint. GZA was not granted access to the roof of either building or any part of the Butler Shed located to the west of the Armory Building. A phone conversation with Eileen Chabot of the NHANG indicated that the contents of the Butler Shed had been removed.

GZA performed a visual assessment of a representative number of light fixtures within the Site buildings for the presence of polychlorinated biphenyl- (PCB-) and di (2-ethyhexyl) phthalate (DEHP-)-containing ballasts. Nearly all ballasts manufactured prior to 1979 contain PCBs. All

² Letter by RPF titled "Peterborough Readiness Center and Motor Vehicle Storage Building, Survey Findings" dated February 11, 2008.

ballasts manufactured after July 1, 1978 which do not contain PCBs are required to be clearly marked "No PCBs." Ballasts not possessing a "No PCBs" label are generally assumed to contain PCBs in concentrations greater than 50 parts per million (ppm).

State solid waste regulations prohibit the disposal of PCB-containing ballasts in landfills. These ballasts must be disposed of at an incineration/recycling facility. Approximately 25 percent of ballasts manufactured after 1979 contain di (2-ethyhexyl) phthalate (DEHP), a regulated substance under the USEPA Superfund regulations. DEHP-contaminated ballasts must be disposed of in the same manner as PCB-contaminated ballasts.

Fluorescent light tubes were observed within the interior of the Site buildings. State regulations prohibit the disposal of mercury-containing devices in landfills due to their mercury content. The preferred option is for the removal and recycling of the bulbs at an approved recycling facility.

Other hazardous materials observed during the survey include high-intensity discharge lighting (mercury, PCB/DEHP), mercury thermostats, equipment oils, and emergency exit sign/light batteries (lead-acid batteries).

3.2 TEST PIT PROGRAM WITH ADDITIONAL SURFICIAL SOIL SAMPLING

On December 29,2008, LBG excavated 12 test pits designated TP-1-SB through TP-12-SB to collect subsurface soil samples and collected four surficial soil samples designated TP-13-SS to TP-16-SS. LBG's excavation program was consistent with that which was outlined in GZA's December 2008 Quality Assurance Project Plan (QAPP).³ Excavation was conducted by the Town of Peterborough using a JCB 217S Series S backhoe. Shallow soil samples were also collected by hand from selected locations using a hand auger. The hand auger was decontaminated between surficial sampling locations. Locations of test pit excavations and the shallow soil samples are shown on *Figure 2*.

Test pit excavation locations were selected based on our understanding of site use to evaluate the following:

TP-1-SB – TP-3-SB	To address potential contamination from the Former Motor Vehicle Storage Building UST
TP-4 –SB–TP-6-SB	To address potential contamination associated with subsurface disposal systems connected to floor drains
TP-7-SB – TP-8-SB	To address potential contamination from current UST
TP-9-SB – TP-10-SB	To identify migration from upgradient off-site contamination (36 Elm Street and 145 Dublin Road)
TP-11-SB – TP-12-SB	To identify contamination associated with overseas shipping
(Surface and Subsurface Sample locations) ^{/2}	containers.
TP-13-SS – TP-16-SS	Conducted in areas of observed surface staining and adjacent to small debris piles

Test pits were generally excavated through natural soils until groundwater was encountered. Soil samples were collected within 4 feet below ground surface (bgs) by entering the test pit excavations and using disposable sampling equipment. Samples were collected from test pits at depths below 4 feet below ground surface utilizing the excavator bucket and subsequently collecting samples using disposable sampling equipment. Soil samples were field screened for total volatile organic compounds (VOCs) using a photoionization detector (PID), and visually

³ Plan by GZA titled "Quality Assurance Project Plan, New Hampshire ARMY, National Guard Armory, NHDES No. 199001027, EPA ID NHD986486082, Peterborough, New Hampshire," dated December 2008.

examined for evidence of soil contamination. Based on the results of field screening and our observations, soil samples were submitted Resource Laboratory, LLC of Portsmouth, New Hampshire as follows:

Five soil samples from the following test pit locations (TP-1-SB, TP-4A-SB, TP-7-SB, TP-11-SB, and TP-16-SS) were submitted for analysis of the following:

- Total petroleum hydrocarbons (TPH) within the diesel range by EPA Method 8015 DRO;
- Resource Conservation and Recovery Act Metals (RCRA-8) (arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver);
- VOCs by EPA Method 8260 (NH Full List)
- polycyclic aromatic hydrocarbons (PAHs) by EPA Method 8270.

Selection of soil samples for analytical laboratory analyses considered the results of field screening, as well as sample collection location and depth relative to our understanding of site use. Analytical laboratory analyses included analysis of duplicate samples (TP-11-SB) for quality assurance/quality control (QA/QC) purposes in accordance with the above-referenced QAPP. Soil samples were collected in accordance with applicable NHDES and EPA protocols and were containerized, transported, and analyzed in consideration of applicable NHDES and EPA protocols.

Louis Berger's test pit logs summarizing materials encountered and the results of field screening are included in *Appendix B*. The results of analytical laboratory analyses of soil samples are summarized in *Table 2* and on *Figure 2*. Resource Laboratory, LLC's analytical laboratory reports are included in *Appendix D*. The following summarize the results of the subsurface explorations and laboratory analyses:

- LBG describes the general stratigraphy encountered within the test pit excavations as gravel with varying amounts of sand extending to a depth up to eight feet bgs. Below the sand unit, LBG describes the soil as clay, with varying amounts of sand. Fill was observed at TP-8-SB likely from a previous UST closure. Bedrock was not encountered at any test pit location.
- Groundwater was encountered in all test pit locations at depths of between 2.5 feet to 6.5 feet below ground surface.
- The results of PID field screening of soil samples collected from the test pit excavations did not detect VOCs with the sole exception of TP-16-SS which had a PID reading of 55 parts per million.
- A "septic" odor was observed within TP-1-SB and TP-7-SB.
- Surficial petroleum staining was observed on soil within test pit excavation TP-16-SS. Observations by LBG indicate the spill to be recent and likely attributable to one of the utility trucks parked at the Site during the December 2008 ice storm restoration effort. LBG estimated the spill as likely hydraulic oil with an overall area of one square foot.
- A former leach field was encountered within TP-4-SB, TP-4A-SB, and TP-6-SB. The logs indicate that leach field pipes were pulled apart. GZA notes that the Armory Building and Motor Vehicle Storage Building are connected to municipal sewer.

3.3 TEST BORINGS WITH MONITORING WELL INSTALLATIONS

GZA observed the advancement of four test borings and installation of groundwater monitoring wells within the completed boreholes between January 19 and 23, 2009 by New Hampshire Boring, Inc. of Londonderry, New Hampshire. The borings and groundwater monitoring wells were used to collect groundwater samples and to evaluate the direction of groundwater flow at the Site. Well designations included: MW-1, MW-2, MW-3, and MW-4 as shown on *Figure 2*. The following includes the rationale for each of the well locations:

MW-1	Downgradient of former leach field and 1,000-gallon UST
MW-2	Downgradient of current 3,000 gallon UST
MW-3	Downgradient of former overseas shipping containers
MW-4	Upgradient location to address possible contamination related to off-site spill

Test borings were completed using standard hollow stem auger techniques with a truck mounted drill rig and direct push drilling techniques with a GeoProbeTM mounted rig. Refer to *Appendix B* for GZA's boring logs. Soil samples were collected at 5-foot intervals and screened in the field for total VOCs using a PID⁴ to a maximum depth of 10 feet bgs. Refusal was not encountered at any of the test boring locations.⁵ Soil samples collected during the drilling program were not submitted to an analytical laboratory consistent with the approved QAPP.

The test borings were completed with 2-inch monitoring wells with a protective roadbox and well screens in overburden wells that spanned the water table observed at the time of drilling. Depth to groundwater was initially measured to range between 3.2 feet bgs (MW-1) and 5.2 feet bgs (MW-2). Drill cuttings were backfilled into the borehole as feasible. After the new monitoring wells were completed, the wells were developed using a peristaltic pump in accordance with GZA Standard Operating Procedure (SOP) B-6. Purge water was discharged to the ground surface.

A relative elevation survey of the newly installed monitoring wells was performed by LBG on January 29, 2009 using a previously established benchmark located within the access roadway for the Town of Peterborough Department of Public Works (DPW) garage. Elevations are referenced to the top of the polyvinyl chloride (PVC). The locations of explorations were additionally survey by LBG.

3.3.2 Summary of Test Boring Observations

GZA observed a 4.5 to >11 foot-thick sand stratum immediately below ground surface. Refer to *Appendix B* for test boring logs. The sand stratum was observed to consist of loose to medium dense, light brown, fine sand with variable amounts of silt.⁶ GZA also observed a gray

⁴ Thermo Environmental Instruments, Organic Vapor Meter, equipped with a 10.6 electron volt lamp and calibrated to an isobutylene in air standard.

 $^{^{5}}$ GZA encountered the feed line associated with the current 3,000-gallon UST at the original MW-2 soil boring location. GZA moved locations and completed the MW-2 installation without refusal.

⁶ Based on a modified Burmister soil classification system.

silt layer 4.5 feet bgs at MW-2.⁵ The silt layer is likely a former wetland bed that had been filled during construction of the Armory. GZA identified a fill layer at MW-2 that was described as fine sand with little silt.⁵

Elevated PID measurements were not observed during the drilling program.

3.4 GROUNDWATER LEVEL MEASUREMENTS

GZA obtained an initial round of water level measurements from each of the newly installed groundwater monitoring wells following installation. LBG obtained a second round after aquifer stabilization had occurred to assess on-site groundwater flow directions. Groundwater elevations were measured as depth-to-water using an electronic water level indicator probe. Groundwater elevations were estimated by subtracting the depth-to-groundwater from the surveyed elevation of the top of the PVC casing.

The stabilized depth to groundwater was measured on January 29, 2009 and ranged between 3.4 feet bgs (MW-1) to 5.6 feet bgs (MW-2). Refer to **Table 3** for tabularized groundwater elevation data, and **Figure 2** for overburden groundwater elevation contours inferred from the January 29, 2009 water level measurements. Based on these data, the predominant groundwater flow direction is to the northwest toward the wetland area west of the Armory building.

3.5 GROUNDWATER SAMPLING

LBG collected groundwater samples from the four new monitoring wells (MW-1 through MW-4) on January 29, 2009. GZA contacted SWRPC for approval to sample each monitoring well prior to the standard two-week stabilization time. GZA expedited groundwater sampling so that results would be available for the Town of Peterborough's Land Use Committee meeting on February 16, 2009. Refer to **Figure 2** for well locations. Monitoring wells were purged and sampled using dedicated hand bailers in accordance GZA SOP B-7. A minimum of three well volumes was purged from each monitoring well prior to sampling. Purge water was discharged to the ground surface.

Groundwater samples from each monitoring well were submitted to Resource Analytical laboratory, LLC for analysis of the following:

- RCRA-8 metals;
- VOCs by EPA Method 8260; and
- PAHs by EPA Method 8270.

Refer to **Table 4** for a complete summary of the groundwater samples collected and the analyses performed.

3.6 ANALYTICAL RESULTS

3.6.1 Soil Analytical Results

The laboratory analytical reports for soil samples are provided in *Appendix D*. Refer to **Table 2** for a summary of soil analytical results. Soil data were compared to both the newly adopted Soil Remediation Standards included in Env-Or 600 *Contaminated Sites Management*. The following summarizes the soil analytical results:

• VOCs, PAHs, and TPH were not detected at TP-1-SB, TP-4A-SB, TP-7-SB, TP-11-SB, and the TP-11-SB duplicate sample;

- Benzene (0.9 milligrams per liter [mg/L]), naphthalene (6.8 mg/L [VOC analysis] and 8.5 mg/L [PAH analysis], and TPH (39,000 mg/L) all exceeded their respective New Hampshire Soil Remediation Standards outlined in Env-Or 600.
- Arsenic, barium, cadmium, chromium, lead, mercury, and silver were detected at one or more sampling locations in excess of laboratory reporting limits.
- Arsenic (13 mg/L; 26 mg/L [Duplicate sample]) exceeded New Hampshire Soil Remediation Standards at TP-11-SB.

3.6.2 Groundwater Analytical Results

The laboratory analytical report for groundwater samples is provided in *Appendix D*. Refer to **Table 4** for a summary of the analytical results. Laboratory analytical data for the groundwater samples was compared to NHDES' Ambient Groundwater Quality Standards (AGQS) included in Env-Or 600 *Contaminated Sites Management*, dated July 23, 2008.

The following summarizes the groundwater analytical results:

- VOCs, PAHs and RCRA-8 metals were not detected within the groundwater samples collected from monitoring locations MW-1, MW-2, and MW-3. Additionally, VOCs and RCRA-8 metals were not detected at MW-4 in groundwater.
- Selected PAHs were detected within groundwater collected from MW-4 in excess of laboratory reporting limits. Benzo (a) anthracene (0.8 micrograms per liter [μ g/L]), Benzo (b) fluoranthene (0.8 μ g/L), Benzo (k) fluoranthene (0.7 μ g/L), and Benzo (a) Pyrene (0.9 μ g/L) were detected in excess of AGQS. The observed concentrations could potentially be a result of suspended soil particles in the groundwater sample. The sample was not field filtered per instructions from EPA. GZA notes that the turbidity of the sample collected from was >1,000 NTU. MW-4 is an upgradient location that previously was used as a storage area for utility poles. GZA notes that the utility poles may be source of the PAHs observed in shallow groundwater.

	рН	Specific Conductance	Turbidity
Well Name	JameStandard unitsMicrosiemens per Centimeter		Nephelometric Turbidity Units
MW-1	7.1	100	> 1,000
MW-2	7.0	430	770
MW-3	6.2	160	660
MW-4	7.0	290	> 1,000

• Field screening of purge water indicated the following:

3.7 DATA VALIDATION OF ANALYTICAL RESULTS

The Southwest Region Planning Commission determined that data validation was not necessary for this work scope as it would have been completed after the deadline imposed by the Town of Peterborough. Further, it is not foreseen by SWRPC that the quality of the data would be challenged. SWRPC consulted with EPA and NHDES prior to making a determination that data validation was not necessary.

4.0 FINDINGS AND CONCLUSIONS

The findings and conclusions provided below are based on the work conducted as part of this Preliminary Environmental Assessment designed to further evaluate the *recognized environmental conditions* previously identified in LBG's January 2008 ESA of the Site:

- GZA conducted a limited inventory of universal waste within both the Armory and Motor Vehicle Storage Building. GZA did not collect environmental samples as part of this inventory and, therefore, can not confirm the presence of asbestos or lead paint. GZA did identify light ballasts that possibly contain PCBs. Fluorescent light tubes were observed within the interior of the Site buildings. State regulations prohibit the disposal of mercury-containing devices in landfills due to their mercury content. The preferred option is for the removal and recycling of the bulbs at an approved recycling facility. Other hazardous materials observed during the survey include high-intensity discharge lighting (mercury, PCB/DEHP), mercury thermostats, equipment oils, and emergency exit sign/light batteries (lead-acid batteries).
- LBG describes the general stratigraphy encountered within the test pit excavations as sand or sandy gravel from 1 foot to 4 feet of natural material or fill, dependent on proximity to wetland areas. Fill overlying potentially naturally occurring soils is described by LBG as "coarse sand." Naturally occurring soil adjacent to the wetland areas and beneath the fill as described as "sandy clay." Bedrock was not encountered at any test pit location.
- Groundwater was detected in overburden soils at a depth ranging between 4 and 5.6 feet bgs. Based on the January 29, 2009 groundwater elevation measurements collected by LBG, groundwater is estimated to flow towards the northwest, toward the wetland area.
- Soil quality at TP-16-SS indicated Benzene (0.9 milligrams per liter [mg/L]), naphthalene (6.8 mg/L [VOC analysis] and 8.5 mg/L [PAH analysis], and TPH (39,000 mg/L) all exceeded their respective New Hampshire Soil Remediation Standards outlined in Env-Or 600. Elevated levels of VOCs and TPH are likely attributable to the hydraulic oil spill observed at this sampling location.
- Arsenic (13 mg/L) exceeded New Hampshire Soil Remediation Standards at TP-11-SB. It is GZA's opinion that this concentration is likely a background condition consistent with concentrations we have observed throughout New Hampshire.
- Benzo (a) anthracene (0.8 micrograms per liter $[\mu g/L]$), Benzo (b) fluoranthene (0.8 $\mu g/L$), Benzo (k) fluoranthene (0.7 $\mu g/L$), and Benzo (a) Pyrene (0.9 $\mu g/L$) were detected in excess of AGQS at MW-4. The observed concentrations could potentially be a result of suspended soil particles in the groundwater sample. The sample was not field filtered per instructions from EPA. GZA notes that the turbidity of the sample

collected from was >1,000 NTU. MW-4 is an upgradient location that previously was used as a storage area for utility poles. GZA notes that the utility poles may be source of the PAHs observed in shallow groundwater.

5.0 RECOMMENDATIONS

GZA understands that Site ownership may be transferred from the New Hampshire Army National Guard to the Town of Peterborough. Based on the findings and conclusions presented above, it is GZA's opinion that the following additional work be performed:

- A second round of groundwater quality samples should be collected to confirm current concentrations. PAH samples should be field filtered prior to sample collection to reduce turbidity. Low-level PAH contamination at MW-4 may be attributable to the presence of suspended soil particles within the sample matrix.
- Removal of impacted soil in the immediate vicinity of the hydraulic oil spill at TP-16-SB.
- Completion of a limited Remedial Action Plan for contaminated soil/groundwater in the general vicinity of MW-4. GZA understands that the Town will be able to apply for Brownfield's remediation money after the property has been transferred to the Town of Peterborough. The RAP will likely include recommendations for limited soil removal associated with the hydraulic oil release, and groundwater monitoring consistent with a GMP.
- Collection of surficial soil samples in the general vicinity of MW-4.
- A building materials survey that includes the collection of samples for lead paint and PCBs should be conducted.

P:\04Jobs\04.0024843.00\04.0024843.01\Report\SWRPCFinal 051209.DOC

TABLES

Table 1

Building Materials Survey

Former New Hampshire National Guard Armory Site Peterborough, New Hampshire

Building	Building Material	Number in Building	Notes
	Motors: Compactors	1	Roof/Ceiling Motors for HVAC system
	Motors: Gear Oil	1	Roof/Ceiling Motors for HVAC system
	Switch Gear	1	Located in Drill Hall
	Transformers	1	3 pole-mounted across street feeding Armory and Motor Vehicle Storage Building
	HVAC Units	2	Roof/Ceiling located in Drill Hall
	Heaters	1	Oil-fired and wall-mounted
	Window AC Units	3	CFCs
	Fire Suppression: Fire Extinguishers	13	Removed and stored in Drill Hall
	Fire Suppression: Hydraulics	N/A	
	Detectors	2	
ry.	Mercury Thermostats	3	
rmo	Hydraulic Door Closers	14	
A	Strobes	N/A	
	Emergency Lights	7	
	Compressors	2	
	Fluorescent Ballasts	41	
	Fluorescent Tubes (4 feet)	83	
	HID Lights: Interior	23	
	HID Lights: Exterior	10	
	Ice Makers	N/A	
	Batteries	12	
	Fire Panel	N/A	
	Kitchen Wall Venting Fan	1	
	Burner	1	Oil-fired with adjacent 275-gallon AST, approximately 1/4 oil left
rage	20 Gallon Drum	1	Approximately 2 gallons of used oil
Stoj	Georgia Pacific Plastic Roof Cement	1	5-gallon can, full
ding	Exterior Paint Can	1	12-ounce can
Vehi Buil	HID Lights	13	
[or	Fluorescent Light Bulbs (8 feet)	5	
Mot	Fluorescent Light Bulbs (4 feet)	2	
	Ballasts	6	

Notes:

1. GZA was not granted access to either building's roof as part of this survey.

2. Lead-based paint on each building is probable. As part of this workscope, GZA did not collect samples for laboratory analyses.

3. For a complete assessment of asbestos containing materials and subsequent abatement activities, please refer to RPF Associates, Inc.'s February 11, 2008 letter titled "Peterborough Readiness Center and Motor Vehicle Storage Building," and RPF Associates, Inc.'s August 8, 2008 letter titled "Ambient Area Air Sampling," respectively.

Table 2Soil Quality SummaryNew Hampshire Army National Guard ArmoryPeterborough, New Hampshire

Stockpile Sample ID and Date of Sample Collection	NH Soil Remediation	TP-1-SB (2.5-4.5)	TP-4A-SB (2-3)	TP-7-SB (4.5-6.5)	TP-11-SB (3-4)	TP-11-SB (3-4) Duplicate	TP-16-SS (0-0.5)
VOCs by EPA Method 8260B (mg/kg)							
Benzene	0.3	<0.1	<0.1	<0.1	< 0.1	< 0.1	0.9
Toluene	100	<0.1	<0.1	<0.1	<0.1	<0.1	13
Ethylbenzene	140	<0.1	<0.1	<0.1	<0.1	< 0.1	11
mp-Xylene	500	<0.1	<0.1	<0.1	< 0.1	< 0.1	34
o-Xylene	500	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	16
Isopropylbenzene	330	<0.1	<0.1	<0.1	< 0.1	< 0.1	4.2
n-Propylbenzene	85	<0.1	<0.1	<0.1	< 0.1	< 0.1	11
1,3,5-Trimethylbenzene	96	<0.1	<0.1	<0.1	< 0.1	< 0.1	17
1,2,4-Trimethylbenzene	130	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	60
sec-Butylbenzene	130	<0.1	<0.1	<0.1	< 0.1	< 0.1	7.2
p-Isopropyltoluene	3,400	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	4.1
Naphthalene	5	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	6.8
SVOCs by EPA Method 8270C (mg/kg)							
Naphthalene	5	<0.6	<0.5	<0.6	<0.7	< 0.7	8.5M
2-Methylnaphthalene		<0.6	<0.5	<0.6	<0.7	<0.7	32
Dibenzofuran Not		<0.6	<0.5	<0.6	<0.7	<0.7	2.4M
Fluorene	77	<0.6	<0.5	<0.6	<0.7	<0.7	5.5M
Phenanthrene	960	<0.6	<0.5	<0.6	<0.7	<0.7	4.9M
Anthracene	1,000	<0.6	<0.5	<0.6	<0.7	<0.7	0.8M
Fluoranthene	960	<0.6	<0.5	<0.6	<0.7	<0.7	1.1M
Pyrene	720	<0.6	<0.5	<0.6	<0.7	<0.7	3.9M
TPH/DRO by EPA Method 8015 (mg/kg)							
	10,000	<230	<210	<240	<290	<290	39,000
Eight RCRA Metals EPA Method 6010 (mg/kg)							
Arsenic	11	3.5	3.5	2.4	13	26	5.4
Barium	1,000	34	42	54	32	34	46
Cadmium	33	< 0.2	0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium	1,000	10	5	14	11	12	17
Lead	400	4.5	2.4	4.1	14	16	18
Mercury	6	< 0.01	< 0.01	< 0.02	0.04	0.04	<0.02M
Selenium	180	<2	<2	<2	<2	<2	<2
Silver	89	< 0.3	< 0.3	0.3	< 0.3	< 0.3	0.4

NOTES:

Soil samples were collected by GZA GeoEnvironmental, Inc and submitted to Resource Laboratory, LLC of Portsmouth, New Hampshire for analysis including volatile organic compounds (VOCs) by Environmental Protection Agency (EPA) Method 8260, Semivolatile Organic Compounds (SVOCs) by EPA Method 8270C, total petroleum hydrocarbons (TPH) by EPA Method 8015B (diesel range organics [DRO]), & the eight Resource Conservation and Recovery Act (RCRA) metals by EPA Method 6010. Results are in milligrams per kilogram (mg/kg).

2. Bold indicates the compound was detected above the detection limit. Shaded values indicates exceedances of Soil Remediation Standards included in Env-Or 600.

3. "<" indicates that the parameter was not detected above the reporting limit.

4. "M" indicates the concentration reported by the laboratory should be qualified due to surrogate recovery exceeding acceptance criteria.

Table 3Groundwater Elevation SummaryNew Hampshire Army National Guard Armory

Peterborough, New Hampshire

		GROUNDWATER (Depth/Elevation [feet])									
	Monitoring Location										
	MW-	MW-1 MW-2 MW-3 MW-4									
	Reference Elevation (feet)										
Date	793.22 793.98 793.58 795.84										
	Depth to Water	Elevation	Depth to Water	Elevation	Depth to Water	Elevation	Depth to Water	Elevation			
1/29/2009	3.4	789.8	5.6	788.4	4.48	789.1	4.62	791.2			

NOTES:

1. Depth-to-groundwater measurements made by Louis Berger Group (LBG) on the dates indicated.

2. The reference elevation for each well is the top of the polyvinyl chloride riser pipe.

3. Elevations are reported in feet and are based on an elevation survey conducted by LBG on January 19, 2009. The elevation for each well was measured using optical survey techniques and was referenced a previous survey conducted by LBG.

Table 4 **Groundwater Quality Summary**

New Hampshire Army National Guard Armory Peterborough, New Hampshire

Compound	NH AGQS Env- Or 600 Table 600-1	MW-1	MW-2	MW-3	MW-3 DUP	MW-4
VOCs by EPA Method 8260B (µg/L)						
Not Detected		ND	ND	ND	ND	ND
PAHs by EPA Method 8270C (µg/L)						
Phenanthrene	210	< 0.5	< 0.5	< 0.5	< 0.5	1.0
Fluoranthene	280	< 0.5	<0.5	<0.5	< 0.5	1.6
Pyrene	210	< 0.5	<0.5	<0.5	< 0.5	1.9
Benzo(a)anthracene	0.1	<0.5	<0.5	<0.5	< 0.5	0.8
Chrysene	5.0	< 0.5	<0.5	<0.5	<0.5	1.0
Benzo(b)fluoranthene	0.1	< 0.5	< 0.5	< 0.5	<0.5	0.8
Benzo(k)fluoranthene	0.5	< 0.5	< 0.5	< 0.5	<0.5	0.7
Benzo(a)pyrene	0.2	<0.2	< 0.2	< 0.2	<0.2	0.9
RCRA 8 Metals by EPA Method 6020/200.8 (mg/L)						
Not Detected		ND	ND	ND	ND	ND

NOTES:

1. Groundwater samples were collected by Louis Berger Group and submitted to Resource Laboratory, LLC of Portsmouth, New Hampshire for analysis including volatile organic compounds (VOCs) by Environmental Protection Agency (EPA) Method 8260B, Polynuclear Aromatic Hydrocarbons (PAHs) by EPA Method 8270C, and the eight Resource Conservation and Recovery Act (RCRA) metals by EPA Method 6010.

2. Bold indicates the compound was detected above the detection limit. Shaded values indicates exceedances of the Ambient Groundwater Quality Standards (AGQS) included in Env-Or 600.

3. "<" indicates that the parameter was not detected above the reporting limit. "ND" indicates parameters within the method were not detected above laboratory reporting limits.

GZA GeoEnvironmental, Inc.

FIGURES

RESULTS OF LABORATORY ANALYSIS OF SOIL SAMPLES IN EXCESS OF SOIL REMEDIATION STANDARDS OUTLINED IN ENV-OR 600

0.8
0.8
0.7
0.9

RESULTS OF LABORATORY ANALYSIS OF GROUNDWATER IN EXCESS OF AGQS OUTLINED IN ENV-OR 600

PROJECT NO.

04.0024843.01

DATE

MARCH 2009

2 SHEET NO.

REVISION NO.

APPENDIX A

LIMITATIONS

GEOHYDROLOGICAL LIMITATIONS

- 1. The conclusions and recommendations submitted in this report are based in part upon the data obtained from a limited number of soil samples from widely spaced subsurface explorations. The nature and extent of variations between these explorations may not become evident until further investigation. If variations or other latent conditions then appear evident, it will be necessary to reevaluate the recommendations of this report.
- 2. The generalized soil profile described in the text is intended to convey trends in subsurface conditions. The boundaries between strata are approximate and idealized and have been developed by interpretations of widely spaced explorations and samples; actual soil transitions are probably more gradual. For specific information, refer to the boring logs.
- 3. Water level readings have been made in observation wells at times and under conditions stated on the exploration logs. These data have been reviewed and interpretations have been made in the text of this report. However, it must be noted that fluctuations in the level of the groundwater may occur due to variations in rainfall and other factors different from those prevailing at the time measurements were made.
- 4. Chemical analyses have been conducted by an outside laboratory. GZA GeoEnvironmental, Inc. (GZA) has relied upon the data provided.
- 5. The conclusions and recommendations contained in this report are based in part upon various types of chemical data and are contingent upon their validity. These data have been reviewed and interpretations made in the report. Moreover, it should be noted that variations in the types and concentrations of contaminants and variations in their flow paths may occur due to seasonal water table fluctuations, past disposal practices, the passage of time, and other factors. Should additional chemical data become available in the future, these data should be reviewed by GZA, and the conclusions and recommendations presented therein modified accordingly.
- 6. Chemical analyses have been performed for specific parameters during the course of this study, as detailed in the text. It must be noted that additional constituents not searched for during the current study may be present in soil and groundwater at the Site.
- 7. It is recommended that this firm be retained to provide further engineering services during design, implementation, and/or construction of any remedial measures, if necessary. This is to observe compliance with the concepts and recommendations contained herein and to allow design changes in the event that subsurface conditions differ from those anticipated.

P:\04Jobs\04.0024843.00\04.0024843.01\Report\SWRPCFinal SRL comments.DOC

APPENDIX B

TEST PIT, TEST BORING AND WELL CONSTRUCTION LOGS

	The Lo	uis Berger Grou	p, Inc.		TEST PIT LOG	Test Pit No: 1
	Project:		NH Army N	Jatio	onal Guard Armory	Project Number: 24843.01C
	Location:		Peterborou	ıgh,	NH	Location: See Site Plan
	Client:		Southwest	Reg	gional Planning Commission	Approx. Ground Elev.: 793
	Contractor:		Town of Pe	eterl	porough, NH - Gordon Young (operator)	Date: December 29, 2008
	Equipment:		JCB 217S	Ser	ies S Backhoe	Inspector: Robert J. Saunders, PE
Depth (ft)	Sample Depth Range	Sample ID	PID (ppmV)		Visual Description (color, soil type, moisture, <i>etc</i> .)	Comments
0.0						
0.5			ND	0.2	Gravel, F-C Sand, some organic matter	
1.0						
1.5						
2.0			ND			
2.5			ND		M, C Sand some cobble	Grndwtr at 2.5 bgs, excavation filling with water
3.0						
3.5						
4.0			7			With continents of Data of European A. Et han
4.5		1-5B(2.5-4.5)	1		Clay, some F Sand	with septic odor, Bot. of Excav ~4.5 bgs
5.0						
5.5						
6.U						
0.5 7.0						
7.0						
8.0						
8.5						
9.0						
9.5						
10.0						
10.5						
11.0						
11.5						
12.0						
Water Level					Approx. PIT Dimensions at Surface	Summary
Date	Time	Depth (feet)			gth: 8' Width: 3.5'	Depth (ft)
					Boulders	Jar Samples
				8" to	18"	Bag Samples
				> 18	"	Water Level (ft)

	The Louis	Berger G	roup, Inc.		TEST PIT LOG	Test Pit No: 2
	Project:		NH Army N	Vatio	onal Guard Armory	Project Number: 24843.01C
	Location:		Peterborou	ugh,	NH	Location: See Site Plan
	Client:		Southwest	Reg	gional Planning Commission	Approx. Ground Elev.: 793
	Contractor:		Town of Pe	eterk	borough, NH - Gordon Young (operator)	Date: December 29, 2008
	Equipment:		JCB 217S	Ser	ies S Backhoe	Inspector: Robert J. Saunders, PE
Depth (ft)	Sample Depth Range	Sample ID	PID (ppmV)		Visual Description (color, soil type, moisture, <i>etc.</i>)	Comments
0.0						
0.5			ND	0.4	Gravel, some F-C Sand and OM	
1.0						
1.5						
2.0			ND	2.3	Gravel, M,C Sand	
2.5			ND	2.6	Gravel, some Sand - getting firmer	Grndwtr at 2.9' bgs, excavation filling with water
3.0						
3.5			ND	3.6	Clay, some Sand	
4.0						Bot. of Excav ~4' bos
4 5						
5.0						
5.5						
5.5						
0.0						
b.5 7 o						
7.0						
7.5						
8.0						
8.5						
9.0						
9.5						
10.0						
10.5						
11.0						
11.5						
12.0						
						No Odors or Staining Observed
	Water L	evel			Approx. PIT Dimensions at Surface	Summary
Date	Time		Depth (feet)	Lenç	gth: 8' Width: 3.5'	Depth (ft)
					Boulders	Jar Samples
				8" to	0 18"	Bag Samples
				> 18	3 ⁿ	Water Level (ft)

	The Louis	Berger G	roup, Inc.		TEST PIT LOG	Test Pit No: 3
	Project:		NH Army M	Natic	onal Guard Armory	Project Number: 24843.01C
	Location:		Peterborou	ugh,	NH	Location: See Site Plan
	Client:		Southwest	Reç	gional Planning Commission	Approx. Ground Elev.: 793
	Contractor:		Town of Pr	eterk	porough, NH - Gordon Young (operator)	Date: December 29, 2008
	Equipment:		JCB 217S	Seri	ies S Backhoe	Inspector: Robert J. Saunders, PE
Depth (ft)	Sample Depth Range	Sample ID	PID (ppmV)		Visual Description (color, soil type, moisture, <i>etc.</i>)	Comments
0.0						
0.5						
1.0					· · · · · · · · · · · · · · · · · · ·	
1.5					· · · · · · · · · · · · · · · · · · ·	
2.0			ļ			ļ!
2.5						
3.0			ND		Gravel, some Sand	Grndwtr at 2.9' bgs, excavation tilling with water
3.5			1		· · · · · · · · · · · · · · · · · · ·	
4.0			!	<u> </u>	P	
4.5					· · · · · · · · · · · · · · · · · · ·	
5.0					Clay same E. M. Sand	
5.5			UN		Clay, some F, M Sano	Pot of Eveny of here
0.0						Bot. of Excav ~6 bgs
6.0 7.0					· · · · · · · · · · · · · · · · · · ·	
7.0					· · · · · · · · · · · · · · · · · · ·	
1.5					· · · · · · · · · · · · · · · · · · ·	
8.0			'	-		<u> </u>
9.0					· · · · · · · · · · · · · · · · · · ·	
9.0					· · · · · · · · · · · · · · · · · · ·	
10.0						
10.5					+ +	
11.0						
11.5					· · · · · · · · · · · · · · · · · · ·	
12.0			1		· · · · · · · · · · · · · · · · · · ·	
					1	
			1		· · · · · · · · · · · · · · · · · · ·	
ll i					· · · · · · · · · · · · · · · · · · ·	No Odors or Staining Observed
	Water L	evel			Approx. PIT Dimensions at Surface	Summary
Date	Time		Depth (feet)	Lenç	gth: 8' Width: 3.5'	Depth (ft)
					Boulders	Jar Samples
			ł	8" to) 18"	Bag Samples
				> 18	<u>}"</u>	Water Level (ft)
			ł			

	The Louis	Berger G	roup, Inc.		TEST PIT LOG	Test Pit No: 4
	Project:		NH Army I	Vatio	onal Guard Armory	Project Number: 24843.01C
	Location:		Peterboro	ugh,	NH	Location: See Site Plan
	Client:		Southwest	Re	gional Planning Commission	Approx. Ground Elev.: 793
	Contractor:		Town of P	eterl	borough, NH - Gordon Young (operator)	Date: December 29, 2008
	Equipment:		JCB 217S	Ser	ies S Backhoe	Inspector: Robert J. Saunders, PE
Depth (ft)	Sample Depth Range	Sample ID	PID (ppmV)		Visual Description (color, soil type, moisture, <i>etc.</i>)	Comments
0.0						
0.5			ND	0.4	Gravel, F-C Sand, some organic matter	
1.0						
1.5						
2.0			ND		M, C Sand some cobble	Grndwtr stabilized at 1.5' bgs
2.5						
3.0			ND		Clay, some Sand	Former Leach Field encntrd 3.5' bgs. Pipes pulled apart-
3.5						flooded excavation. GW elevation stablized at 1.5' bgs.
4.0						Bot. of Excav ~4' bgs
4.5						
5.0						
5.5						
6.0						
6.5						
7.0						
7.5						
8.0						
8.5						
9.0						
9.5						
10.0						
10.5						
11.0						
11.5						
12.0						
						No Odors or Staining Observed
	Water Level				Approx. PIT Dimensions at Surface	Summary
Date	Time		Depth (feet)	Lenç	gth: 8' Width: 3.5'	Depth (ft)
					Boulders	Jar Samples
				8" to	0 18"	Bag Samples
				> 18)" 	Water Level (ft)

The Louis Berger Group, Inc.					TEST PIT LOG	Test Pit No: 4A
	Project:		NH Army N	Vatio	onal Guard Armory	Project Number: 24843.01C
	Location:		Peterboro	bugh, NH		Location: See Site Plan
	Client:		Southwest	Reg	gional Planning Commission	Approx. Ground Elev.: 793
	Contractor:		Town of P	eterl	porough, NH - Gordon Young (operator)	Date: December 29, 2008
	Equipment:		JCB 217S	Ser	ies S Backhoe	Inspector: Robert J. Saunders, PE
Depth (ft)	Sample Depth Range	Sample ID	PID (ppmV)		Visual Description (color, soil type, moisture, <i>etc.</i>)	Comments
0.0						
0.5			ND	0.4	Gravel, F-C Sand, some organic matter	
1.0						Getting courser 12" bgs down
1.5					_	
2.0			5		M, C Sand some cobble	Grndwtr stabilized at 1.8' bgs
2.5						
3.0		4A-SB(2-3)				Former Leach Field encotrd 3' bos. Pipes pulled
3.5						apart-flooded excavation. GW elevation stabilized
4.0						at 22" bgs. Bot. of Excav ~3.5' bgs
4.5						
5.0						
5.5						
6.0						
6.5						
7.0						
7.0						
7.5						
8.5						
0.0						
9.0						
9.5						
10.0						
10.5						
11.0						
11.5						
12.0						
						No Udors or Staining Observed
	Water Level			Approx. PIT Dimensions at Surface	Summary	
Date	Time		Depth (feet)	Lenç	gth: 8' Width: 3.5'	Depth (ft)
					Boulders	Jar Samples
				8" to	18"	Bag Samples
				> 18"		
				> 18	n.	Water Level (ft)

The Louis Berger Group, Inc.					TEST PIT LOG	Test Pit No: 5
	Project:		NH Army N	Vatio	onal Guard Armory	Project Number: 24843.01C
	Location:		Peterborou	ugh,	NH	Location: See Site Plan
	Client:		Southwest	Re	gional Planning Commission	Approx. Ground Elev.: 793
	Contractor:		Town of P	eterl	borough, NH - Gordon Young (operator)	Date: December 29, 2008
	Equipment:		JCB 217S	Ser	ies S Backhoe	Inspector: Robert J. Saunders, PE
Depth (ft)	Sample Depth Range	Sample ID	PID (ppmV)		Visual Description (color, soil type, moisture, <i>etc.</i>)	Comments
0.0				I		
0.5			ND	0.4	Gravel, F-C Sand, some organic matter	
1.0						
1.5						
2.0			ND		M O Osarda a su sabble	
2.5			ND		M, C Sand some cobble	
3.0						
3.5						
4.0			ND		Clay some Sand	
5.0			ND		Clay	Bot. of Excav ~5' bos
5.5						
6.0						
6.5						
7.0						
7.5						
8.0						
8.5						
9.0						
9.5						
10.0						
10.5						
11.0						
12.0						
12.0						
						No Odors or Staining Observed
	Water Level				Approx. PIT Dimensions at Surface	Summary
Date	Time		Depth (feet)	Len	gth: 8' Width: 3.5'	Depth (ft)
					Boulders	Jar Samples
				8" to	0.18"	Bag Samples
				> 18	3"	Water Level (ft)

	The Louis	Berger G	roup, Inc.		TEST PIT LOG	Test Pit No: 6
	Project:		NH Army N	latic	onal Guard Armory	Project Number: 24843.01C
	Location:		Peterborou	ugh,	NH	Location: See Site Plan
	Client:		Southwest	Reg	gional Planning Commission	Approx. Ground Elev.: 793
	Contractor:		Town of Pe	eterk	porough, NH - Gordon Young (operator)	Date: December 29, 2008
	Equipment:		JCB 217S	Seri	ies S Backhoe	Inspector: Robert J. Saunders, PE
Depth (ft)	Sample Depth Range	Sample ID	PID (ppmV)		Visual Description (color, soil type, moisture, <i>etc.</i>)	Comments
0.0						
0.5			ND		Gravel, F-C Sand, some organic matter	
1.0						
1.5					M. C. Sand same sabble	Craduite stabilized at 0.4 bas
2.0						
2.5			ND		Clay, some F-M sand	Septic Lines @ 27"-30" bgs. Pulled apart and
3.0						nooded excavation. Bot. of Excav ~3 bgs
3.5						
4.5						
5.0						
5.5						
6.0						
6.5						
7.0						
7.5						
8.0						
8.5						
9.0						
9.5						
10.0						
10.5						
11.0						
12.0						
12.0						
						No Odors or Staining Observed
						_
	Water Level				Approx. PIT Dimensions at Surface	Summary
Date	Time		Depth (feet)	Lenç	gth: 8' Width: 3.5'	Depth (ft)
					Boulders	Jar Samples
				8" to	18"	Bag Samples
				> 18	,	Water Level (ft)

	The Lo	uis Berger Grou	p, Inc.		TEST PIT LOG	Test Pit No: 7
	Project:		NH Army N	Vatio	onal Guard Armory	Project Number: 24843.01C
	Location:		Peterborou	ıgh,	NH	Location: See Site Plan
	Client:		Southwest	Reg	jional Planning Commission	Approx. Ground Elev.: 794
	Contractor:		Town of Pe	eterk	oorough, NH - Gordon Young (operator)	Date: December 29, 2008
	Equipment:		JCB 217S	Seri	es S Backhoe	Inspector: Robert J. Saunders, PE
Depth (ft)	Sample Depth Range	Sample ID	PID (ppmV)		Visual Description (color, soil type, moisture, <i>etc</i> .)	Comments
0.0						
0.5			ND		OM, F,M Sand, trace silt	
1.0						
1.5						
2.0			ļ			
2.5						
3.0						
3.5						
4.0			ND		F-M Sand, some cobble	Sandy fill material
4.5			ND		ОМ	Possibly Original Ground
5.0						
5.5		7-SB(4 5-6 5)	10			Grndwtr seenage observed at 6.2' bos
0.0		7 00(4.0 0.0)			Gravish Clav with 6" Books	Sentic/Decay Oder pearly level w/adjacent watland
6.5 7.0			ND		Gray Ish Clay With 6 - Rocks	Bot of Excav ~7' bas
7.0						Dot. of Excaver bys
7.5						
8.5						
9.0						
9.5						
10.0						
10.5						
11.0						
11.5						
12.0						
Water Level					Approx. PIT Dimensions at Surface	Summary
Date	Time		Depth (feet)	Leng	ıth: 7.5' Width: 3.5'	Depth (ft)
					Boulders	Jar Samples
				8" to	18"	Bag Samples
				> 18	"	Water Level (ft)

	The Louis	Berger G	roup, Inc.		TEST PIT LOG	Test Pit No: 8
	Project:		NH Army N	Vatio	onal Guard Armory	Project Number: 24843.01C
	Location:		Peterborou	ugh,	NH	Location: See Site Plan
	Client:		Southwest	Reg	gional Planning Commission	Approx. Ground Elev.: 794
	Contractor:		Town of Pe	eterk	porough, NH - Gordon Young (operator)	Date: December 29, 2008
	Equipment:		JCB 217S	Ser	ies S Backhoe	Inspector: Robert J. Saunders, PE
Depth (ft)	Sample Depth Range	Sample ID	PID (ppmV)		Visual Description (color, soil type, moisture, <i>etc.</i>)	Comments
0.0						
0.5			ND		Topsoil, F,M Sand, trace silt	
1.0						
1.5						
2.0						
2.5						
3.0						Mixed fills from 0.5' bas to 5' bas, in vicinity of former and
3.5						current UST so area has been disturbed at least twice.
4.0						
4.5						Water filling excavation 22Foundation Drain22 At ~5' bos
5.0			ND		Mixed Fills - Sand, OM, some Clay	Mottling band at 4.7' bgs. Grndwtr stabilized at ~5' bgs.
5.5						Bottom of Excavation ~5.5' bos
6.0						
6.5						
7.0						
7.0						
7.5						
8.0						
8.5						
9.0						
9.5						
10.0						
10.5						
11.0						
11.5						
12.0						
						No Odors or Staining Observed
-						
Water Level					Approx. PIT Dimensions at Surface	Summary
Date	Time		Depth (feet)	Leng	yth: 8' Width: 3.5'	Depth (ft)
					Boulders	Jar Samples
				8" to	18"	Bag Samples
				> 18	и	Water Level (ft)
	1	1				

The Louis Berger Group, Inc.					TEST PIT LOG	Test Pit No: 9
	Project:		NH Army N	Vatio	onal Guard Armory	Project Number: 24843.01C
	Location:		Peterborou	ugh,	NH	Location: See Site Plan
	Client:		Southwest	Re	gional Planning Commission	Approx. Ground Elev.: 796
	Contractor:		Town of Pe	eterl	porough, NH - Gordon Young (operator)	Date: December 29, 2008
	Equipment:		JCB 217S	Ser	ies S Backhoe	Inspector: Robert J. Saunders, PE
Depth (ft)	Sample Depth Range	Sample ID	PID (ppmV)		Visual Description (color, soil type, moisture, <i>etc.</i>)	Comments
0.0						
0.5			ND	0.4	Gravel	
1.0						
1.5			ND	1.2	OM, some sand, trace silt	with root matrix
2.0			ND	2.0	Clay, some sand, trace silt	
2.5						
3.0						
3.5						
4.0						
4.5						
5.0						
6.0					_	Grndwtr observed at 5.8' bgs
6.5		9-SB(2-6)	1	6.6	Clay, some sand	
7.0		()			,	
7.5						
8.0						
8.5						
9.0						
9.5						
10.0						
10.5						
11.0						
11.5						
12.0						
						Na Odana an Otaining Obaamuud
						No Odors or Staining Observed
	Water	Level			Approx. PIT Dimensions at Surface	Summary
Date	Time		Depth (feet)	Len	yth: 9' Width: 3.5'	Depth (ft)
					Boulders	Jar Samples
				8" to	18"	Bag Samples
				> 18	n	Water Level (ft)

The Louis Berger Group, Inc.					TEST PIT LOG	Test Pit No: 10
	Project:		NH Army N	Natio	onal Guard Armory	Project Number: 24843.01C
Location: Peterboro					NH	Location: See Site Plan
Client: Southwes					gional Planning Commission	Approx. Ground Elev.: 793
Contractor: Town of Pe				eterborough, NH - Gordon Young (operator)		Date: December 29, 2008
Equipment: JCB 217S				Series S Backhoe		Inspector: Robert J. Saunders, PE
Depth (ft)	Sample Depth Range	Sample ID	PID (ppmV)		Visual Description (color, soil type, moisture, <i>etc</i> .)	Comments
0.0						
0.5						
1.0			ND		Topsoil	
1.5						
2.0					v	Graduitr at 2.6' bas
2.5						Gindwii at 2.0 bys
3.0					Clay, trace slit	an unit when activity of
3.5			ND		Clay, some F Sand , trace sit	soupy when saturated
4.0						
4.5						
5.0						
6.0						
6.5						
7.0						
7.5						
8.0						
8.5						
9.0						
9.5						
10.0						
10.5						
11.0						
11.5						
12.0						
						No Odors or Staining Observed
Water Level					Approx. PIT Dimensions at Surface	Summary
Date	Time	Depth (feet)			yth: 8' Width: 3.5'	Depth (ft)
				Boulders		Jar Samples
				8" to 18"		Bag Samples
				> 18	"	Water Level (ft)

The Louis Berger Group, Inc.					TEST PIT LOG	Test Pit No: 11
Project: NH Army					nal Guard Armory	Project Number: 24843.01C
	Location:		Peterborou	ugh,	NH	Location: See Site Plan
Client: Southwes					gional Planning Commission	Approx. Ground Elev.: 794
Contractor: Town of P					oorough, NH - Gordon Young (operator)	Date: December 29, 2008
Equipment: JCB 217S					es S Backhoe	Inspector: Robert J. Saunders, PE
Depth (ft)	Sample Depth Range	Sample ID	PID (ppmV)		Visual Description (color, soil type, moisture, <i>etc.</i>)	Comments
0.0						
0.5						
1.0			1		Topsoil and Gravel, some asphalt pieces	
1.5						
2.0						
2.5						
3.0			ND	3.2	Course Sand	
3.5			15		OM _	minor seepage emitting from top of OM lens
4.0		11-SB(3-4)				appears to have been a perched water - minor
4.5						
5.0						
5.5						
6.0						
6.5						
7.0						
7.5						
8.0						
8.5						
9.0			ND		Clay, some F,M Sand	No Groundwater Noted, Bot. of Excav ~9' bgs
9.5						
10.0						
10.5						
11.0						
11.5						
12.0						
						No Odors or Staining Observed
Water Level					Approx. PIT Dimensions at Surface	Summary
Date	Date Time Depth (feet)			Length: 11' Width: 4.5'		Depth (ft)
					Boulders	Jar Samples
				8" to	18"	Bag Samples
				> 18	n	Water Level (ft)
The Louis Berger Group, Inc.					TEST PIT LOG	Test Pit No: 12
------------------------------	-----------------------	-----------	--------------	-----------------------------------	--	--
	Project:		NH Army N	Vatio	onal Guard Armory	Project Number: 24843.01C
	Location:		Peterborou	ugh,	NH	Location: See Site Plan
	Client:		Southwest	Re	gional Planning Commission	Approx. Ground Elev.: 794
	Contractor:		Town of Pe	eterl	porough, NH - Gordon Young (operator)	Date: December 29, 2008
	Equipment:		JCB 217S	Ser	ies S Backhoe	Inspector: Robert J. Saunders, PE
Depth (ft)	Sample Depth Range	Sample ID	PID (ppmV)		Visual Description (color, soil type, moisture, <i>etc</i> .)	Comments
0.0						
0.5						
1.0			ND	0.8	Topsoil and Gravel, some asphalt pieces	
1.5						
2.0						
2.5						
3.0			ND		M-C Sand, trace silt	
3.5						
4.0						
4.5						
5.0						
5.5						
6.0						
6.5					M.C. Sand trace silt	
7.0					M-C Sario, trace sit	Long of alow approximately 10" 10" T
7.5					Clay, some F, M Sand	Lens of clay approximately 10 -12 1
8.0					E M Sand trace cilt	
0.0 0.0						
9.0						
9.5			ND		Clay some F. M. Sand	No Groundwater Noted Bot of Excav ~10' bas
10.5						
11.0						
11.5						
12.0						
						No Odors or Staining Observed
	Water Level			Approx. PIT Dimensions at Surface	Summary	
Date	Time		Depth (feet)	Length: 12' Width: 5'		Depth (ft)
					Boulders	Jar Samples
				8" to	0 18"	Bag Samples
				> 18	, n	Water Level (ft)

	The Louis Berger Group, Inc.	SA	MPLE LOG	Test Pit No: Surface Samples			
	Project: NH Army	National Guard Armory		Project Number: 24843.01C			
	Location: Peterboro	ugh, NH		Location: See Site Plan			
	Client: Southwes	t Regional Planning Comm	ission	Approx. Ground Elev.:			
	Contractor:			Date: December 29, 2008			
	Equipment:		Inspector: Robert J. Saunders, PE				
SAMPLE	Location:	Visual Description (color, soil type, moisture, <i>etc</i> .)	PID (ppmV)	SAMPLE ID			
TP-11-SS TP-12-SS TP-13-SS TP-14-SS TP-15-SS TP-16-SS	West of Armory, Near TP-11 West of Armory, Near TP-12 Front of Site, NW of TP-9 SE of MV Building Inside Paddock, East of MV East of UST, Near TP-8	Gravel drive Gravel drive Gravel drive Stone Chip Stone Chip OM, Topsoil	2 0 0 2 0 55	11-SS (0'-0.5') 12-SS (0'-0.5') 14-SS (0'-0.5') 15-SS (0'-0.5') 16-SS (0'-0.5')			

		G7	ZA.			A	rmy Nation	al Guard Arn	nory		Boring No	b.: MV	V-1
	74	Ge	oEnviron	mental, In	c.		Peterb	orough, NH			Page:	1 of	1
		\square En_{2}	gineers an	d Scientists	5						File No.: _	04.00248	43.01
Con	tractor:	Ne	w Hamps	hire Boring	ı, Inc.	_	Auger/	Complex			Check:		
Fore	eman: _		Peter La	aBossiere		_	Casing	Sampler	(GROUNI	OWATER F	READINGS	\$
Log	ged by:		Don	Kirkland		Туре:	HSA	SS	Date	Time	Depth	Casing	Stab
Date	e Start/F	inish:_	1-19	9-09/1-19-	-09	_ I.D.: _	4.25 in	<u> </u>	1/19/09	1700	3.1 ft	well	4 hrs.
Bori	ng Loca	ation:_S	See Exploi	ration Loca	tion Plan	_ Hammer Wt.: _			1/22/09	1000	3.2 ft	well	4 days
GS	Elev.:		Dat	um:N	IGVD	_ Hammer Fall: _							
		San	nple Infor	mation		Rig / Other: _							
÷.					Field					S	Equip	mont Inst	balled
(ft Dep	No.	Pen./ Rec. (in)	Depth (ft)	Blows (/6")	Test Data (ppm)	Descriptio	Sample on & Classifi	cation	Stratum Desc.	Remar		Flush-mo Roadbox	unted
2 4 4 10 12 14 14 REMA	S-1 S-2 S-3	24/ 16 24/ 19 24/ 19 24/ 18 amples tylene-ii concent	0.0- 2.0 4.0- 6.0 9.0- 11.0 were screen-air stand trations ar	4-4 2-4 4-4 5-6 6-6 6-7 6-7	(ppm) ND ND ND	Loose, light brown Silt (0 to 4 inches) SAND, some Silt. Loose, light brown Medium dense, lig Silt. Wet. Bottom of boring a surface. No refuse le organic compour etected are reporte ent's detection limi	n, fine to coars changing to b Dry. n, fine SAND, fine at 11 feet belo al. nds (VOCs) u	e SAND, trace prown, fine trace Silt. Wet. • SAND, trace w ground	SAND 11.0 ft 1580B orga the "Field T	nic vapor est Data	r meter refe	Roadbox Concre 1' Cutting: 3' Bentoni 4' 2" ID Si 40 PVC Riser Filter Si Filter Si 40 PVC Screen Slot) 	te
R K S													
All dep Water those	oth measu level read present at	rements a lings have the time	are approxim been made measureme	nate. Stratific at times and nts were mad	ation lines l under con le.	represent approximate ditions stated. Fluctuat	boundary betwee tions of groundwa	en soil types, transiti ater may occur due t	ons may be gr o other factors	adual. than	Boring N	lo.: MW-1	

SOIL BL WELL MW1-4.GPJ GZA_NH.GDT 3/19/09

		∣GZ	.A				Army Natior	al Guard Arn	mory Boring No.: MW-2				
	7Δ	Ge	oEnviron	mental, In	c.		Peterb	orough, NH			Page:	1 of .	1
		\blacksquare Eng	gineers an	la Scientisis	ŝ						File No.:	04.00248	343.01
Con	tractor	Ne	w Hamps	hire Boring	, Inc.	_	Auger/	Samplar			Check: _		
Fore	eman: _		Peter La	aBossiere		_	Casing	Sampler	_	GROUN	IDWATER I	READING	S
Log	ged by:		Don	Kirkland		_ Туре:	Geoprobe	Sleeve	Date	Time	Depth	Casing	Stab
Date	e Start/F	Finish:	1-23	<u>3-09 / 1-23-</u>	09	_ I.D.:	3 in	1.37 in	1/23/09	1015	5.2 ft	well	15 min
Bori	ng Loc	ation: <u>S</u>	ee Explo	ration Loca	tion Plan	Hammer Wt.:							
GSI	Elev.: _		Dat	um:N	IGVD	_ Hammer Fall:							
		Sam	ple Infor	mation		Rig / Other:							
(ft)	No	Pen./	Depth	Blows	Field Test		Sample		Stratum	arks	Equip	ment Inst	alled
		(in)	(ft)	(/6")	Data (ppm)	Descrip	tion & Classifi	cation	Desc.	Rem		Roadbox	Sunted
	S-1	60/ 43 60/ 55	0.0- 5.0 10.0		ND 2	10 inches Topso SAND, little Silt. Gray, SILT, trac	e fine SAND.	ght brown, fine	SAND 4.5 ft SILT			Concre 0.5' Filter S 1' Benton 2' Filter S 2" ID S 40 PV(Riser 3' 2" ID S 40 PV(Screen Slot)	ete and ite and olid Sch C Well
10						Bottom of boring surface. No refu	g at 10 feet belo usal.	w ground	10.0 ft			10'	
12													
14-													
R E M A R K S													
All dep Water those	oth measu level read present a	irements a dings have t the time r	re approxin been made measureme	nate. Stratific e at times and nts were mad	ation lines under con e.	represent approxima ditions stated. Fluctu	te boundary betwee ations of groundwa	en soil types, transiti ater may occur due	ions may be g to other factors	radual. s than	Boring N	lo.: MW-2	

		Gee	Environ	mental, In	c.		Peterl	borough, NH			Page:	1 of _	1
		\blacksquare Eng	gineers an	a scientisi.	8						File No.:	04.00248	343.01
Con	tractor	Ne	w Hamps	hire Boring	, Inc.	_	Auger/	Sampler			Check:		
Fore	eman: _		Peter La	Bossiere			Casing	oumpier	Data	GROUNI	OWATER F	READING	S
Log	ged by:				00	_ Type:_	4.25 in	<u>55</u>	1/10/00	1705			Stab 7 bro
Date	e Start/H	-inish:		ration Loca	tion Plan	_ I.D.: _	4.23 11	<u> </u>	1/23/09	1010	4.11L	well	7 115. 4 dave
GS	ING LOC Flev ·		Dat		IGVD	Hammer Wt.:			1/20/00	1010	4.0 11	WCII	- days
			Dut		-	Rig / Other:							
		Sam	ple Infor	mation	1								
Depth (ft)	No.	Pen./ Rec. (in)	Depth (ft)	Blows (/6")	Field Test Data (ppm)	Descript	Sample ion & Classi	fication	Stratum Desc.	Remarks	Equip	ment Inst Flush-mo Roadbox	alled
	S-1 S-2	24/ 16 24/ 19 24/ 18	0.0- 2.0 4.0- 6.0 9.0- 11.0	15-10 10-8 1-3 6-7 7-4 5-6	ND	Medium dense, b some Silt, trace f Loose, light brow Moist.	orown, fine to ine Gravel. D n, fine SAND	medium SAND, bry.	SAND			Concre - 1' - Cutting - 3' - Benton - 4' - 2" ID S 40 PVC Riser - 5' Filter S 40 PVC Screen Slot) - 10'	ite olid Sch C Well and lotted Sc C Well (0.01"
12 12 14 14 R E M A	1. Soils isobu VOC	samples itylene-ir concent	were scre -air stano rations ar	eened for to lard. Tota e below th	otal volat VOCs d e instrum	Bottom of boring surface. No refu le organic compor etected are report nent's detection lim	at 11 feet bel sal. unds (VOCs) ed in parts pe iit.	ow ground using a TEI Mode er million (ppm) in	11.0 ft 11.0 ft 580B orga the "Field T	nic vapor	r meter refe ' column. "	erenced to ND" indica	an ates
R K S All dep Water	oth measu	irements a	re approxim been made	nate. Stratific	ation lines I under cor	represent approximate	e boundary betw ations of ground	een soil types, transit water may occur due	ions may be g	adual.	Boring	lo.: MW-3	

Corr Fore Log	TL.	Ge Eng	oEnviron gineers an	mental, In d Scientists	c.		Peterb	orouah. NH			Page:	1 of _	1
Cor For Log	ntractor	\square Eng	gineers an	a scientisis	5			- · · · · · · · ·	H Page: <u>1</u> of <u>1</u>				
Cor For Log	ntractor										File No.:	04.00248	43.01
For Log		: <u>Ne</u>	w Hamps	hire Boring	, Inc.	_	Auger/	Samplor			Check:		
Log Dat	eman: _		Peter La	Bossiere		_	Casing	Sampler	_	GROUNE	WATER F	READINGS	5
Date	ged by:		Don	Kirkland		Туре:	Geoprobe	Sleeve	Date	Time	Depth	Casing	Stab
Dut	e Start/F	Finish:	1-23	<u>3-09 / 1-23-</u>	<u>.09</u>	I.D.: _	3 in	1.37 in	1/23/09	1005	4.4 ft	well	2 hrs
Bor	ing Loc	ation:	ee Exploi	ration Loca	tion Plan	Hammer Wt.:							
GS	Elev.: _		Dat	um:N	IGVD	_ Hammer Fall:							
		Sam	ple Infor	mation		Rig / Other:							
f f		- (Field					S	Fauin	mont Inst	halled
Cep (ft	No.	Pen./ Rec. (in)	Depth (ft)	Blows (/6")	Test Data (ppm)	Descrip	Sample tion & Classif	ication	Stratum Desc.	Remark		Flush-mo Roadbox	unted
2	S-2	60/ 55	5.0- 10.0		2	Gray, SILT, trace	e fine Sand.		SAND			Concre 0.5' Filter Si 2' Filter Si 2" ID Si 40 PVC Riser 3' 40 PVC Screen Slot)	otted S Well (0.01"
10						Bottom of boring surface. No refu	at 10 feet belo sal.	ow ground	10.0 ft			10'	
12 	1. Soil sisobu	samples	were scre	eened for to dard. Total	otal volati VOCs d	le organic compo	unds (VOCs) ι ted in parts per	ising a TEI Mode r million (ppm) in	I 580B orga the "Field T	inic vapor	r meter refe column. "	erenced to	an
E M A R C S All de Water	VOC	urements a dings have	rations ar	re below the nate. Stratific at times and	e instrum	ent's detection lin	nit. e boundary betwe ations of groundw	en soil types, transiti ater may occur due t	ons may be gr	radual.	Boring	lo.: MW-4	

APPENDIX C

BUILDING MATERIALS SURVEY

Visit us at www.airpf.com Air Quality Testing Mold Assessment Industrial Hygiene & Safety EH&S Training & Seminars Asbestos & Lead Management

February 11, 2008

Andrew Filiault NH Adjutant General's Department 4 Pembroke Road NHAG-FM Concord, NH 03301

Re: Peterborough Readiness Center and Motor Vehicle Storage Building Survey Findings RPF File 07.2707

Dear Mr. Filiault:

On December 13, 2007, RPF Associates, Inc. (RPF) conducted a survey at the Peterborough Readiness Center and Motor Vehicle (MV) Storage Buildings located at 25 Elm Street, Peterborough, NH. The survey was performed throughout the interior of each building for accessible asbestos-containing building material (ACBM). The survey was conducted in accordance with current State and federal rules and regulations. Below is a summary of findings, discussion of the results and methodology, and preliminary recommendations for proper management of the ACBM.

Summary of Findings

RPF inspectors surveyed accessible building space within the interior of the buildings in accordance with the initial asbestos inspection requirements prior to renovation or demolition work as stated in the NH Administrative Rule Env-A 1800 and other applicable federal regulations.

Several types of suspect ACBM were observed by RPF, including friable and nonfriable suspect material. Sampling of the suspect material observed was performed to the extent indicated herein and asbestos was detected in the following materials: pipe and fitting insulation, floor tile, flooring mastic, and window putty.

Depending on the extent of renovation and final construction plans, proper abatement and/or management of the materials may be required in accordance with applicable State and federal regulations. Renovation and demolition plans should be reviewed by a certified industrial hygienist and a licensed project designer for possible asbestos impact issues. Based on the impact assessment and planned usage, technical specifications should be prepared for abatement, as applicable. Design work may also entail further site survey work for confirmation and to address project specifics.

Asbestos-Containing Building Material

Thirty-one (31) homogeneous groups of accessible suspected asbestos-containing building material were identified in the areas surveyed. Suspect materials were identified based on current industry standards, EPA, and other guideline listings of potential suspect ACBM. A total of seventy-six (76) samples were extracted from the different groups of suspect material in accordance with EPA sampling protocols. Of the samples collected by RPF, asbestos was detected in six (6) groups of suspect ACBM within the Readiness Center building. A list of ACBM identified in the building, EPA category listings, and asbestos content is included as Appendix A.

A listing of the suspect materials identified that were sampled during this survey, samples extracted, and analytical results are included in Appendix B. The ACBM identified during this survey consisted of friable and nonfriable material. The nonfriable ACBM was observed to be in good to fair condition and, left undisturbed and properly managed, is unlikely to cause any major fiber release episodes. The friable ACBM pipe insulation was observed to be in fair condition with exposed edges. Care should be used to prevent damage to these exposed edges as a minimum and wrapping these ends with wettable wrap should be considered as further protection.

It is reasonable to assume that, in buildings of this construction period and based on the findings for accessible space, some inaccessible ACBM may be present within wall, floor and ceiling space. For example, wall chase areas may have ACBM pipe insulation or electric wire wrap. Another example is possible multiple layers of flooring or felt papers. Further destructive testing can be performed when feasible, during specification design work, or in conjunction with demolition activity as requested by you and based on the site conditions.

As previously reviewed with you, the exterior roofing components of these buildings were not included in the scope of this survey and sampling was not performed in order not to damage roofing integrity at this time. As such, the suspect roofing materials should be assumed to be ACBM for the purposes of this inspection. When feasible and prior to demolition or disturbance, the roofing components and systems should be tested, including representative core samples and analysis of the different suspect materials, in order to determine asbestos content.

Materials encountered at the site subsequent to this survey, which are not included on the enclosed listings of suspect material sampled or ACBM inventories, should be assumed to be ACBM until proper testing proves otherwise (for example prior to any disturbance due to maintenance, renovation or demolition activity). Please notify RPF in this event to arrange for proper testing and assessments.

In accordance with current regulatory requirements, ACBM that may be impacted or disturbed (such that asbestos fiber release occurs) by renovation, demolition or other such activity must be removed by qualified, licensed firms. ACBM that will not be impacted by renovation or demolition activity may be left in place if managed properly and if the materials are maintained in good condition. The damaged ACBM insulation should be cleaned, repaired and/or removed at a minimum and based on planned usage. Although regulations for removal of nonfriable ACBM are somewhat less stringent than the requirements for friable ACBM, it should be noted that nonfriable ACBM that is subjected

NH Adjutant Generals Department Pre-Construction Survey Report

to grinding, abrasion, and other forces, could be rendered friable. In this event, the nonfriable ACBM would be re-categorized friable ACBM.

Asbestos removal is highly regulated at the State and federal level, and in some cases, at the local level also. Notification to NH Air Resources is required 10-days prior to the start of abatement work and demolition. RPF recommends that only qualified, trained, and licensed firms, as applicable, be engaged to complete asbestos removal or other abatement activity. Asbestos abatement work must be designed (abatement specifications prepared) by accredited, licensed personnel. For project design, contingencies for possible hidden ACBM should be included and further explorative survey work may be prudent, depending on the extent of planned renovation and demolition.

All employees and contractors that may access or otherwise disturb areas with ACBM or suspect ACBM present should be notified of the presence of ACBM and possible hidden ACBM, and the need to use caution when proceeding with work. Appropriate notifications and hazard communications should be completed to all employees, contractors and others in accordance with US OSHA regulations and other applicable requirements (including asbestos labeling in accordance with 29 CFR Part 1926).

ACBM labeling requirements should also be addressed in accordance with OSHA, 29 CFR 1926.1101. Please note that the scope of RPF's services for this survey did not include labeling of ACBM or hazard communications to other employees, building occupants, contractors, or subcontractors. If you would like any assistance in this matter please call our office. Other O&M Program related guidelines and recommendations are as indicated in 40 CFR Part 763 (AHERA).

Conclusions

Based on the survey findings, the Readiness Center building was found to contain ACBM. Abatement of the ACBM must be completed prior to renovation or demolition work in accordance with current State and federal requirements. Special attention is also warranted for the exposed edges of the ACBM pipe insulation located throughout the Readiness Center. Sufficiently in advance of the start of renovation, abatement project design should commence. As part the initial design steps, the project designer should review the planned renovation and construction activity for possible impact on ACBM. Any remaining ACBM after construction should be included in the existing management plan to ensure safe occupancy of the building with ACBM present.

Documentation of current ACBM conditions and in-depth hazard assessments is beyond the scopeof-work for this initial survey. With the exception of the specific testing and analysis detailed herein, no other samples of materials, oil, water, ground water, air, or other suspect hazardous materials were collected in the course of this inspection that supports or denies these conclusions. No additional services beyond those explicitly stated herein were performed and none should be inferred or implied. The summary and conclusions are based on reasonably ascertainable information as described in this report. RPF Associates, Inc. makes no guarantees, warranties, or references regarding this property or the condition of the property after the period of this report. NH Adjutant Generals Department Pre-Construction Survey Report

If you have any questions at this time, or if you would like to discuss the project design process, please call our office.

Sincerely, RPF ASSOCIATES, INC.

uci

Allan D. Mercier Project Manager, Licensed Inspector

Appendix A: Summary of ACBM Identified

Appendix B: ACBM Sampling Results

Appendix C: Example Pictures

Appendix D: General Information

Appendix E: Summary of Methodology and Limitations

07.2707 021108 Peterborough Rpt

APPENDIX A

NH ADJUTANT GENERAL Peterborough Readiness Center and MV Storage Buildings

Building Material	Location	Approximate Quantity	EPA Category	Asbestos Results
Readiness Center			1	4- <u></u>
Pipe Insulation	Throughout building	1,600 linear feet (lf)	Friable ACM	15% Chrysotile
Fitting Insulation	Throughout building	120 fittings	Friable ACM	45% Chrysotile
9" Floor Tile (black)	Front entry corridor, Admin Office, Det. Sgt's Office, Commanders Office	1,252 square feet (sq. ft.)	Category I Nonfriable	8% Chrysotile
9" Floor Tile (green)	Commanders Office and Class Room with Café	827 sq. ft.	Category I Nonfriable	10% Chrysotile
Flooring Mastic (black)	Commanders Office and Class Room with Café	827 sq. ft.	Category I Nonfriable	5% Nonfriable
Interior Window Putty	Throughout building	13 windows @ 21 lf/window	Category II Nonfriable	2% Chrysotile
	Drill Hall	66 windows @ 31 lf/window		
Motor Vehicle Stora	ge Building			L
No Accessible ACBM P	resent	+		

SUMMARY OF ACCESSIBLE ACBM IDENTIFIED

Table Notes:

- Appendix D of the report contains further information on the EPA category listings. Please note that Category 1 and Category 2 nonfriable ACM are recategorized as friable and/or RACM under certain conditions. Current State asbestos regulations are more strict and comprehensive than the EPA NESHAPs requirements.
- All quantities are approximate only and should be confirmed during abatement project design and abatement bidding.
- Materials listed as assumed ACBM should be properly testing by an accredited inspector prior to disturbance and when such materials become accessible, or shall be handled as ACBM,
- It is likely that some inaccessible ACBM is present. Care should be used when renovating/demolishing inaccessible building space. Further explorative survey work may be necessary during abatement design and in conjunction with demolition.
- Please reference full text of the report for details on the scope of the inspection and limitations.

APPENDIX B

Visit us at <u>www.airpf.com</u> Air Quality Testing Mold Assessment Industrial Hygiene & Safety EH&S Training & Seminars Asbestos & Lead Management

NH Adjutant General Peterborough Readiness Center

SUMMARY OF BULK MATERIAL SAMPLING AND RESULTS Polarized Light Microscopy – EPA 600/R-93/116 Method Samples Collected: December 13, 2007

Sample ID	Sample Description	Asbestos Content	Other Content
121307-HG01	Pipe insulation, white, maintenance office, north corner at ceiling	15% Chrysotile	70% Cellulose 15% Non-fibrous
121307-HG01B	Pipe insulation, white, men's latrine, center at ceiling	*SFP	*SFP
121307-HG01C	Pipe insulation, white, drill room, southeast wall between maintenance office and class room	*SFP	*SFP
121307-HG02	Fitting insulation, white, maintenance office, north corner at ceiling	45% Chrysotile	55% Non-fibrous
121307-HG02B	Fitting insulation, white, kitchen, just inside doorway at ceiling	*SFP	*SFP
121307-HG03 Floor Tile	Floor tile, black, corridor in front of Det. Sgt. Office, just outside doorway, left side	8% Chrysotile	92% Non-fibrous
121307-HG03 Mastic	Mastic, black, corridor in front of Det. Sgt. Office, just outside doorway, left side	No Asbestos Detected	100% Non-fibrous
121307-HG03B Floor tile	Floor tile, black, Det. Sgt. Office, rear center of office	*SFP	*SFP
121307-HG03B Mastic	Mastic, black, Det. Sgt. Office, rear center of office	No Asbestos Detected	100% Non-fibrous
121307-HG04 Floor tile	Floor tile, green, Class Room in café area	10% Chrysotile	90% Non-fibrous
121307-HG04 Mastic	Mastic, black, Class Room, in café area	5% Chrysotile	95% Non-fibrous
121307-HG04B Floor tile	Floor tile, green, Class Room, in café area	*SFP	*SFP
121307-HG04B Mastic	Mastic, black, Class Room, in café area	*SFP	*SFP
121307-HG04C Floor tile	Floor tile, green, Commanders office, south corner by door to latrine	*SFP	*SFP
121307-HG04C Mastic	Mastic, black, Commanders office, south corner by door to latrine	*SFP	*SFP
121307-HG05	Interior window putty, white, NCO office, southeast wall, south window	2% Chrysotile	98% Non-fibrous
121307-HG05B	Interior window putty, white, supply office, southwest wall, sole window	*SFP	*SFP
121307-HG05C	Interior window putty, white, kitchen, northeast wall, sole window	*SFP	*SFP

 Trace means less than 1%. SFP Means analysis was terminated because asbestos was detected on a previous homogenous sample during the survey work. Please reference the "HG" group number.

Please reference the full report for discussions and additional information and limitations pertaining to these results.

Page 1 of 4 for the above date and location

Visit us at <u>www.airpf.com</u> Air Quality Testing Mold Assessment Industrial Hygiene & Safety EH&S Training & Seminars Asbestos & Lead Management

NH Adjutant General Peterborough Readiness Center

SUMMARY OF BULK MATERIAL SAMPLING AND RESULTS Polarized Light Microscopy – EPA 600/R-93/116 Method Samples Collected: December 13, 2007

Sample ID	Sample Description	Asbestos Content	Other Content
121307-HG06	Formica with adhesive, gray, kitchen countertop, north side of counter	No Asbestos Detected	10% Cellulose 90% Non-fibrous
121307-HG06B	Formica with adhesive, gray, kitchen, countertop, south side of counter	No Asbestos Detected	10% Cellulose 90% Non-fibrous
121307-HG07	Formica with adhesive, red, café service countertop	No Asbestos Detected	10% Cellulose 90% Non-fibrous
121307-HG07B	Formica with adhesive, red, supply, countertop on north side of room	No Asbestos Detected	10% Cellulose 90% Non-fibrous
121307-HG08	Formica with adhesive, gray, Admin Office, northwest side of office	No Asbestos Detected	10% Cellulose 90% Non-fibrous
121307-HG08B	Formica with adhesive, gray, Admin Office, northwest side of office	No Asbestos Detected	10% Cellulose 90% Non-fibrous
121307-HG09	Ceramic tile grout, gray, Commanders latrine, floor in southeast corner	No Asbestos Detected	100% Non-fibrous
121307-HG09B	Ceramic tile grout, gray, men's latrine, floor in front of showers	No Asbestos Detected	100% Non-fibrous
121307-HG11	Plaster with skim coat, white, men's latrine, front room ceiling	No Asbestos Detected	100% Non-fibrous
121307-HG11B	Plaster with skim coat, white, women's latrine, ceiling just inside doorway	No Asbestos Detected	100% Non-fibrous
121307-HG11C	Plaster with skim coat, white, men's latrine, shower room ceiling, center	No Asbestos Detected	100% Non-fibrous
121307-HG12	Fixed ceiling tiles, 24", white, maintenance office, ceiling in northwest corner	No Asbestos Detected	80% Cellulose 20% Non-fibrous
121307-HG12B	Fixed ceiling tiles, 24", white, classroom, ceiling in southwest corner	No Asbestos Detected	80% Cellulose 20% Non-fibrous
121307-HG13	Suspended ceiling tiles, 2x2, white, corridor, approximate center	No Asbestos Detected	25% Cellulose, 45% Mineral Wool, 30% Non-fibrous
121307-HG13B	Suspended ceiling tiles, 2x2, white, corridor, center of corridor in front of Det. Sgt's Office	No Asbestos Detected	25% Cellulose, 45% Mineral Wool, 30% Non-fibrous
121307-HG14	Fixed ceiling tiles, 12", white, corridor, approximate center above HG13	No Asbestos Detected	80% Cellulose 20% Non-fibrous
121307-HG14B	Fixed ceiling tiles, 12", white, janitor's closet, west corner	No Asbestos Detected	80% Cellulose 20% Non-fibrous
121307-HG15	Paper, black, corridor, ceiling above fixed ceiling tiles, approximate center	No Asbestos Detected	80% Cellulose 20% Non-fibrous

 Trace means less than 1%. SFP Means analysis was terminated because asbestos was detected on a previous homogenous sample during the survey work. Please reference the "HG" group number.

Please reference the full report for discussions and additional information and limitations pertaining to these results.

Page 2 of 4 for the above date and location

Visit us at <u>www.airpf.com</u> Air Quality Testing Mold Assessment Industrial Hygiene & Safety EH&S Training & Seminars Asbestos & Lead Management

NH Adjutant General Peterborough Readiness Center

SUMMARY OF BULK MATERIAL SAMPLING AND RESULTS Polarized Light Microscopy – EPA 600/R-93/116 Method Samples Collected: December 13, 2007

Sample ID	Sample Description	Asbestos	Other Content
121307-HG15B	Paper, black, Det. Sgt. Office, ceiling above fixed ceiling tiles, approximate center	No Asbestos Detected	80% Cellulose 20% Non-fibrous
121307-HG16	Gypsum, white, NCO office, northwest wall, right corner	No Asbestos Detected	90% Cellulose 10% Non-fibrous
121307-HG16B	Gypsum, white, NCO office, northwest wall, west corner	No Asbestos Detected	90% Cellulose 10% Non-fibrous
121307-HG16C	Gypsum, white, NCO office, northwest wall, north corner	No Asbestos Detected	90% Cellulose 10% Non-fibrous
121307-HG17	Skim coat, white, maintenance office, southeast wall, lower left corner	No Asbestos Detected	100% Non-fibrous
121307-HG17B	Skim coat, white, maintenance office, southeast wall, lower left corner	No Asbestos Detected	100% Non-fibrous
121307-HG17C	Skim coat, white, maintenance office, southeast wall, lower right corner	No Asbestos Detected	100% Non-fibrous
121307-HG18	Covebase mastic, yellow, corridor, near building entrance door, lower right side	No Asbestos Detected	100% Non-fibrous
121307-HG18B	Covebase mastic, yellow, corridor, near Det. Sgt's Office doorway, lower left side	No Asbestos Detected	100% Non-fibrous
121307-HG19	Tectam board, tan, supply room, ceiling just inside entry door	No Asbestos Detected	80% Cellulose 20% Non-fibrous
121307-HG19B	Tectam board, tan, supply room, ceiling near vault door	No Asbestos Detected	80% Cellulose 20% Non-fibrous
121307-HG20	Pipe insulation, brown, drain pipe in supply room, just inside entry door	No Asbestos Detected	20% Cellulose, 70% Hair, 10% Non-fibrous
121307-HG20B	Pipe insulation, brown, drain pipe in supply room, just inside entry door	No Asbestos Detected	20% Cellulose, 70% Hair, 10% Non-fibrous
121307-HG20C	Pipe insulation, brown, drain pipe in supply room, just inside entry door	No Asbestos Detected	98% Hair 2% Non-fibrous
121307-HG21	Pressboard panel, white, class room, just inside doorway to drill hall, ceiling cover piece over light	No Asbestos Detected	100% Cellulose
121307-HG22	Exterior window caulk, white, Commander's office, southeast wall, south window	No Asbestos Detected	100% Non-fibrous
121307-HG22B	Exterior window caulk, white, Commander's office, southeast wall, north window	No Asbestos Detected	100% Non-fibrous
121307-HG23	Exterior window glaze, Commander's office, southeast wall, south window	No Asbestos Detected	100% Non-fibrous

 Trace means less than 1%. SFP Means analysis was terminated because asbestos was detected on a previous homogenous sample during the survey work. Please reference the "HG" group number.

Please reference the full report for discussions and additional information and limitations pertaining to these results.

Page 3 of 4 for the above date and location

Visit us at <u>www.airpf.com</u> Air Quality Testing Mold Assessment Industrial Hygiene & Safety EH&S Training & Seminars Asbestos & Lead Management

NH Adjutant General Peterborough Readiness Center

SUMMARY OF BULK MATERIAL SAMPLING AND RESULTS Polarized Light Microscopy – EPA 600/R-93/116 Method Samples Collected: December 13, 2007

Sample ID	Sample Description	Asbestos Content	Other Content
121307-HG23B	Exterior window glaze, kitchen, northeast wall,	No Asbestos	100% Non-fibrous
07.0707.101007.D	sole window	Detected	

Trace means less than 1%. SFP Means analysis was terminated because asbestos was detected on a previous homogenous sample during the survey work. Please reference the "HG" group number.

Please reference the full report for discussions and additional information and limitations pertaining to these results.

Page 4 of 4 for the above date and location

Visit us at <u>www.airpf.com</u> Air Quality Testing Mold Assessment Industrial Hygiene & Safety EH&S Training & Seminars Asbestos & Lead Management

NH Adjutant General Peterborough Motor Vehicle Storage Building

SUMMARY OF BULK MATERIAL SAMPLING AND RESULTS Polarized Light Microscopy – EPA 600/R-93/116 Method

Samples Collected: December 13, 2007

Sample ID	Sample Description	Asbestos Content	Other Content
121307-HG101	Interior window glaze, gray, office, south wall, sole window	No Asbestos Detected	100% Non-fibrous
121307-HG101B	Interior window glaze, gray, maintenance area, northwest wall, sole window	No Asbestos Detected	100% Non-fibrous
121307-HG102	Fiberboard, yellow, cage area, northwest wall, center	No Asbestos Detected	90% Cellulose 10% Non-fibrous
121307-HG102B	Fiberboard, yellow, maintenance area, southeast wall, center	No Asbestos Detected	90% Cellulose 10%Non-fibrous
121307-HG103	Formica green, with red adhesive, office, countertop along northwest wall	No Asbestos Detected	100% Non-fibrous
121307-HG103B	Formica, green, with red adhesive, office, countertop along northwest wall	No Asbestos Detected	100% Non-fibrous
121307-HG104	Textured Surfacing, office ceiling, approximate center	No Asbestos Detected	100% Non-fibrous
121307-HG104B	Textured Surfacing, office ceiling, approximate center	No Asbestos Detected	100% Non-fibrous
121307-HG104C	Textured Surfacing, office ceiling, approximate center	No Asbestos Detected	100% Non-fibrous
121307-HG105	Gypsum, white, office area, northwest wall, north corner	No Asbestos Detected	10% Cellulose 90% Non-fibrous
121307-HG105B	Gypsum, white, office area, northeast wall, east corner	No Asbestos Detected	10% Cellulose 90%Non-fibrous
121307-HG105C	Gypsum, white, office ceiling, approximate center	No Asbestos Detected	10% Cellulose 90%Non-fibrous
121307-HG106	Joint compound, white, office area, northeast wall, north corner	No Asbestos Detected	100% Non-fibrous
121307-HG106B	Joint compound, white, office area, northeast wall, south corner	No Asbestos Detected	100% Non-fibrous
121307-HG106C	Joint compound, white, office area, northeast wall, south corner	No Asbestos Detected	100% Non-fibrous
121307-HG107	Pressboard panel, brown, maintenance area, southeast wall, near entry door	No Asbestos Detected	90% Cellulose 10% Non-fibrous
121307-HG108	Gyp-crete, white, garage ceiling, southwest side,	No Asbestos Detected	100% Non-fibrous

 Trace means less than 1%. SFP Means analysis was terminated because asbestos was detected on a previous homogenous sample during the survey work. Please reference the "HG" group number.

Please reference the full report for discussions and additional information and limitations pertaining to these results.

Page 1 of 2 for the above date and location

Visit us at <u>www.airpf.com</u> Air Quality Testing Mold Assessment Industrial Hygiene & Safety EH&S Training & Seminars Asbestos & Lead Management

NH Adjutant General Peterborough Motor Vehicle Storage Building

SUMMARY OF BULK MATERIAL SAMPLING AND RESULTS Polarized Light Microscopy – EPA 600/R-93/116 Method

Samples Collected: December 13, 2007

Sample ID	Sample Description	Asbestos Content	Other Content
121307-HG108B	Gyp-crete, white, garage ceiling, southwest side, approximate center	No Asbestos Detected	100% Non-fibrous
121307-HG108C	Gyp-crete, white, garage ceiling, southwest side, approximate center	No Asbestos Detected	100% Non-fibrous

07.2707 121307 MV Storage bulk tbl

 Trace means less than 1%. SFP Means analysis was terminated because asbestos was detected on a previous homogenous sample during the survey work. Please reference the "HG" group number.

Please reference the full report for discussions and additional information and limitations pertaining to these results.

Page 2 of 2 for the above date and location

APPENDIX C

NH ADJUTANT GENERAL Peterborough Readiness Center

Example Photographs

Photo 1: Pipe and fitting insulation in Maintenance Office

Photo 2: ACBM pipe and fitting insulation in the kitchen

NH ADJUTANT GENERAL Peterborough Readiness Center

Example Photographs

Photo 3: Black 9" ACBM floor tile within the main entry corridor.

Photo 4: Classroom area with green 9" ACBM floor tile and mastic.

NH ADJUTANT GENERAL Peterborough Readiness Center

Example Photographs

Photo 5: Example of window containing exterior ACBM glaze.

320 First NH Turnpike • Northwood, NH 03261 603-942-5432 Tel • 603-942-5300 Fax

 110 Haverhill Road • Suite 354 • Amesbury, MA 01913

 1-888-SAFE-AIR (888-723-3247) Toll Free
 978-388-9114 Tel • 978-388-9113 Fax

APPENDIX D

INDUSTRY AND REGULATORY OVERVIEW

General Overview

Asbestos is the name for a group of naturally occurring minerals that separate into strong, very fine fibers. The adverse health effects associated with asbestos exposure have been extensively studied for many years. Results of these studies and epidemiological investigations have demonstrated that inhalation of asbestos fibers may lead to increased risk of developing one or more diseases. In all cases, extreme care must be used not to disturb asbestos-containing materials or to create fiber release episodes.

Asbestos-containing building material (ACBM) that is in good condition, and is not damaged or otherwise disturbed, is not likely release asbestos fibers into the air if it is managed properly. When properly managed, release of asbestos fibers into the air or surrounding areas is prevented or minimized, and the risk of asbestos-related disease can be reduced to a negligible level. However, ACBM can become hazardous when, due to damage, disturbance, or deterioration over time, they release fibers into the air. In the event of fiber release without proper controls, elevated airborne concentrations of asbestos create a potential hazard for any employees and building occupants in the affected areas.

ACBM is classified by the different regulatory agencies based on friability. Friable ACBM, when dry, can be crumbled, pulverized, or reduces to powder by hand pressure. Considering that a primary concern when dealing with ACBM is airborne fibers or the potential for exposure to airborne fibers, friable ACBM is typically considered to present more of a health risk as compared with nonfriable ACBM. Nonfriable ACBM is further grouped by the EPA into Category I and Category II nonfriable ACBMS depending on the specific type of ACM. It should be noted that nonfriable ACBM that is rendered friable, or in some cases, subjected to certain activities and forces during work, may also be considered regulated as friable ACBM.

Health Issues

The three primary diseases most often related to asbestos exposure are asbestosis, mesothelioma, and lung cancer. Asbestosis is a fibrous scarring of the lung caused by scar tissue formations in the lung in response to the asbestos fibers. Mesothelioma is a rare cancer of the lining of the lungs or the lining of the abdomen. Exposure to all types of asbestos increases the risk of developing lung cancer and asbestosis. Other diseases found more often among persons exposed to asbestos include cancer of the esophagus, stomach, colon, and pancreas; pleural plaques and pleural thickening; and pleural effusion.

Exposure to airborne asbestos rarely causes immediate health problems. The diseases related to asbestos may develop over a period of 10 to 30 years. Studies have shown that there is dose-response relationship between exposure to asbestos and disease -or the more asbestos inhaled over an extended period, the greater the risk of developing an asbestos-related disease. Smoking, in combination with asbestos exposure, can increase the risk of disease by 50 percent.

Regulatory Overview

Asbestos is highly regulated at the federal, state, and local levels. To date, the two primary Federal agencies responsible for generating asbestos-related regulations are the U.S. Environmental Protection Agency (EPA) and the Occupational Safety and Health Administration (OSHA). Additionally, regulations regarding asbestos vary from state-to-state and, in some cases, locally.

Regulations promulgated by the Environmental Protection Agency (EPA) include:

Asbestos Abatement Projects; Worker Protection Rule Title 40 Part 763, Sub-part G of the Code of Federal Regulations

Asbestos School Hazard Abatement Reauthorization Act (ASHARA) Training Requirements of (AHERA) Regulation Asbestos Containing Materials in Schools Final Rule & Notice Title 40, Part 763, Sub-part E, Code of Federal Regulations

Asbestos Hazard Emergency Response Act (AHERA) Regulation Asbestos Containing Materials in Schools Final Rule & Notice Title 40, Part 763, Sub-part E of the Code of Federal Regulations

National Emission Standard for Hazardous Air Pollutants (NESHAPS) National Emission Standard for Asbestos, Title 40, Part 61, Sub-part A, and Sub-part M (Revised Sub-part B) of the Code of Federal Regulations

The US Occupational Safety and Health Administration (OSHA) has also developed regulations for asbestos (abatement and related issues) including:

Occupational Exposure to Asbestos, Tremolite, Anthophyllite, and Actinolite; Final Rules

Title 29, Part 1910, Section 1001 and Part 1926, Section 1101 of the Code of Federal Regulations

Respiratory Protection

Title 29, Part 1910, Section 134 of the Code of Federal Regulations Other related sections of 29 CFR 1926 and 29 CFR 1910

Individual state agencies must also be consulted for current updated copies of state rules and regulations. Regulations and requirements can very significantly from state to state.

In summary, based on current regulatory requirements, ACBM, which may be impacted or disturbed (such that asbestos fiber release occurs) by renovation, demolition, or other such activity, must be removed by qualified, licensed firms. ACBM, which will not be impacted or disturbed by renovation or demolition activity, may be left in place if managed properly and if the materials are maintained in good condition. A qualified, licensed project designer and certified industrial hygienist must design abatement work. All abatement should be monitored, tested, and inspected by a qualified EH&S firm/certified industrial hygienist. ACBM that will not be impacted or disturbed by renovation or demolition activity may be left in place if managed properly and if the materials are maintained in good condition.

APPENDIX E

320 First NH Turnpike • Northwood, NH 03261 603-942-5432 Tel • 603-942-5300 Fax

1-888-SAFE-AIH (888-723-3247) Toll Free

 110 Haverhill Fload • Suite 354 • Amesbury, MA 01913

 Toll Free
 978-388-9114 Tel • 978-388-9113 Fax

SUMMARY OF METHODOLOGY

Asbestos

An EPA accredited inspector surveyed all accessible building space in the designated structure. Suspect materials were inventoried and categorized into homogeneous groups of materials. To the extent indicated in the report, samples were then extracted from the different groups of homogeneous materials in accordance with applicable State and federal rules and regulations. Samples were placed into containers, labeled, and submitted for analysis to determine asbestos content. Analysis was conducted using polarized light microscopy (PLM). Sampling and analytical protocols used during the survey work were based on the requirements of 40 CFR Part 763. Although PLM is the method currently recognized in State and federal regulations for asbestos identification in bulk samples, some industry studies have found that PLM may not be sensitive enough to detect all of the asbestos fibers in certain types of materials, such as floor tile. In the event that more definitive results are requested, RPF recommends that confirmation testing be completed using transmission electron microscopy.

Inaccessible areas, such as building space behind walls and floors were not included in the inspection and care should be used when accessing these areas during demolition. In the event that additional suspect materials are encountered, the materials should be properly tested by an accredited inspector. Please also reference the discussions and findings for additional notes on the inspection methods used during this inspection.

SURVEY LIMITATIONS: ACBM

- 1. The observations and conclusions presented in the Report were based solely upon the services described herein, and not on scientific tasks or procedures beyond the scope of services as discussed in the proposal and text of the report. The conclusions and recommendations are based on visual observations and testing, limited as indicated in the Report, and were arrived at in accordance with generally accepted standards of industrial hygiene practice and asbestos professionals. In addition and as applicable, where sample analyses were conducted by an outside laboratory, RPF has relied upon the data provided, and has not conducted an independent evaluation of the reliability of this data.
- 2. Observations were made of the designated accessible areas of the site as indicated in the Report. While it was the intent of RPF to conduct a survey to the degree indicated, it is important to note that not all suspect ACBM material in the designated areas were specifically assessed and visibility was limited, as indicated, due to the presence of furnishings, equipment, solid walls and solid or suspended ceilings throughout the facility. Suspect material may have been used and may be present in areas where detection and assessment is difficult until renovation and/or demolition proceeds.
 - Although some assumptions may have been stated regarding the potential presence of inaccessible or hidden ACBM, a full inspection for all ACBM or a destructive inspection for possible inaccessible suspect ACBM was not conducted. This inspection did not include a hazard assessment survey or testing to determine current dust concentrations of asbestos in and around the building. The survey was limited to ACBM as indicated herein and a site assessment for other possible environmental health and safety hazards or subsurface pollution was not performed as part of the scope of this initial site inspection.
 - Where access to portions of the surveyed area was unavailable or limited, RPF renders no opinion of the condition and assessment of these areas. The survey results only apply to areas specifically accessed by RPF during the site inspection.
 - Interiors of mechanical equipment and other building or process equipment may also have ACBM gaskets or insulation present and were not included in this inspection. Further inspections would likely be required prior to renovation or demolition activity.
- 6. Existing reports, drawings, and analytical results provided by the Client to RPF, as applicable, were not verified and, as such, RPF has relied upon the data provided as indicated, and has not conducted an independent evaluation of the reliability of these data.
- 7. All hazard communication and notification requirements, as required by U.S. OSHA regulation 29 CFR Part 1926, 29 CFR Part 1910, and other applicable rules and regulations, by and between the Client, general contractors, subcontractors, building occupants, employees and other affected persons were the responsibility of the Client and Client's abatement contractor and are not part of the scope of services to be provided by RPF.
 - Results presented in the report area limited to the materials and conditions present at the time that the site inspection was actually performed by RPF. The applicability of the observations and recommendations presented in this report to other portions of the site were not determined as part of this scope of work. Many accidents, injuries and exposures and environmental conditions are a result of individual employee/employer actions and behaviors, which will vary from day to day, and with operations being conducted. Changes to the site that occur subsequent to the RPF inspection may result in conditions which differ from those present during the survey and presented in the findings of the report. For example, during construction changes it is possible that previously inaccessible suspect material may be encountered. As such, the contractors, employers OSHA-competent persons, and other affected staff should be advised of the possible presence of inaccessible ACBM and suspect ACBM. In the event that newly identified suspect material is encountered, please contact RPF to arrange for proper inspection, assessment and testing as applicable.

Typically, hazardous building materials such as asbestos, lead paint, PCBs, mercury, refrigerants, hydraulic fluids and other materials may be present in buildings. The survey performed by RPF only addresses the specific items as indicated in the report. In general it is recommended that surveys for all accessible hazardous building material be performed. Notify RPF to arrange for additional survey work as needed.

3.

4.

5.

8.

9.

APPENDIX D

SOIL ANALYTICAL RESULTS

Resource Laboratories, LLC

124 Heritage Avenue #10 Portsmouth, NH 03801

Donald Kirkland GZA GeoEnvironmental, Inc. Airpark Business Center 380 Harvey Rd Manchester, NH 03103-3347

PO Number: None LabID: 15945 Date Received: 12/30/08

Project: 04.0024843.01 NHANG Armory Peterboro, NH

Attached please find results for the analysis of the samples received on the date referenced above.

Unless otherwise noted in the attached report, the analyses performed met the requirements of Resource Laboratories, LLC Quality Assurance Plan. The Standard Operating Procedures (SOP) are based upon USEPA SW-846, USEPA Methods for Chemical Analysis of Water and Wastewater, Standard Methods for the Examination of Water and Wastewater and other recognized methodologies. The results contained in this report pertain only to the samples as indicated on the chain of custody.

Resource Laboratories, LLC maintains certification with the agencies listed below.

We appreciate the opportunity to provide laboratory services. If you have any questions regarding the enclosed report, please contact the laboratory and we will be glad to assist you.

Sincerely, Resource Laboratories, LLC

(for) lle

Susan Sylvester Principal, General Manager 1/15/09

Date

Total number of pages

Resource Laboratories, LLC Certifications

New Hampshire 1732 Maine NH903

Massachusetts M-NH902

Lab ID: 15945

Lab Number: 15945-002

Sample ID: TP-7-SB (4.5-6.5)

Matrix: Solid Percent Dry: 80.6 %

Sampled: 12/29/08 9:00		Quant		Instr Dil'n	Prep		Ana	alvsis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
dichlorodifluoromethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
chloromethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
vinyl chloride	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
bromomethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
chloroethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1 /7 /09	15:49	SW5035A8260B
trichlorofluoromethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
diethyl ether	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
acetone	< 2	2	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
1,1-dichloroethene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
methylene chloride	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
carbon disulfide	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
methyl t-butyl ether (MTBE)	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
trans-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
isopropyl ether (DIPE)	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
ethyl t-butyl ether (ETBE)	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
1,1-dichloroethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
t-butanol (TBA)	< 2	2	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
2-butanone (MEK)	< 0.3	0.3	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
2,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
cis-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
chloroform	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
bromochloromethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
tetrahydrofuran (THF)	< 0.5	0.5	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
1,1,1-trichloroethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
1,1-dichloropropene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
t-amyl-methyl ether (TAME)	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
carbon tetrachloride	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
1,2-dichloroethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
benzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
trichloroethene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
1,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
bromodichloromethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
1,4-dioxane	< 2	2	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
dibromomethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
4-methyl-2-pentanone (MIBK)	< 0.4	0.4	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
cis-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
toluene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
trans-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
2-hexanone	< 0.5	0.5	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
1,1,2-trichloroethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
1,3-dichloropropane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
tetrachloroethene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
dibromochloromethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
1,2-dibromoethane (EDB)	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B

Lab ID: 15945

Lab Number: 15945-002

Sample ID: TP-7-SB (4.5-6.5)

Matrix: Solid Percent Dry: 80.6 %

Sampled: 12/29/08 9:00		Quant		Instr Dil'n	Prep		Analysis		
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
chlorobenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
1,1,1,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
ethylbenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
m&p-xylenes	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
o-xylene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
styrene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
bromoform	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
isopropylbenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
1,1,2,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
1,2,3-trichloropropane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
n-propylbenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
bromobenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
1,3,5-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
2-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
4-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
tert-butylbenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
1,2,4-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
sec-butylbenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
1,3-dichlorobenzene	< 0.1	0,1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
4-isopropyltoluene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
1,4-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
1,2-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
n-butylbenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
1,2-dibromo-3-chloropropane (DBCP)	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
1,2,4-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
1,3,5-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
hexachlorobutadiene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
naphthalene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
1,2,3-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
Surrogate Recovery		Limits							
dibromofluoromethane SUR	98	78-114	%	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
toluene-D8 SUR	98	88-110	%	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
4-bromofluorobenzene SUR	97	86-115	%	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
a,a,a-trifluorotoluene SUR	107	70-130	%	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B

Lab ID: 15945

Lab Number: 15945-003

Sample ID: TP-16-SS (0-0.5)

Matrix: Solid Percent Dry: 70.8 %

Sampled: 12/29/08 9:50		Quant		Instr Dil'n	Prep		Ana	alysis	
Parameter Re	sult	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
dichlorodifluoromethane <	0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
chloromethane <	0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
vinyl chloride <	0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
bromomethane <	0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
chloroethane <	0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
trichlorofluoromethane <	0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
diethyl ether <	0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
acetone <	16	16	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
1,1-dichloroethene <	0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
methylene chloride <	0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
carbon disulfide <	0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
methyl t-butyl ether (MTBE) <	0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
trans-1,2-dichloroethene <	0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
isopropyl ether (DIPE) <	0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
ethyl t-butyl ether (ETBE) <	0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
1,1-dichloroethane <	0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
t-butanol (TBA) <	16	16	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
2-butanone (MEK) <	1.9	1.9	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
2,2-dichloropropane <	0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
cis-1,2-dichloroethene <	0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
chloroform <	0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
bromochloromethane <	0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
tetrahydrofuran (THF) <	3.1	3.1	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
1,1,1-trichloroethane <	0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
1,1-dichloropropene <	0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
t-amyl-methyl ether (TAME) <	0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
carbon tetrachloride <	0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
1,2-dichloroethane <	0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
benzene	0.9	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
trichloroethene <	0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
1,2-dichloropropane <	0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
bromodichloromethane <	0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
1,4-dioxane <	16	16	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
dibromomethane <	0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
4-methyl-2-pentanone (MIBK) <	2.8	2.8	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
cis-1,3-dichloropropene <	0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
toluene	13	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
trans-1,3-dichloropropene <	0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
2-hexanone <	3.1	3.1	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
1,1,2-trichloroethane <	0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
1,3-dichloropropane <	0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
tetrachloroethene <	0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
dibromochloromethane <	0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
1,2-dibromoethane (EDB) <	0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B

Lab ID: 15945

Lab Number: 15945-003

Sample ID: TP-16-SS (0-0.5)

Matrix: Solid Percent Dry: 70.8 %

Sampled: 12/29/08 9:50		Quant		Instr Dil'n	Prep		Analysis		
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
chlorobenzene	< 0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
1,1,1,2-tetrachloroethane	< 0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
ethylbenzene	11	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
m&p-xylenes	34	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
o-xylene	16	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
styrene	< 0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
bromoform	< 0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
isopropylbenzene	4.2	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
1,1,2,2-tetrachloroethane	< 0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
1,2,3-trichloropropane	< 0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
n-propylbenzene	11	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
bromobenzene	< 0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
1,3,5-trimethylbenzene	17	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
2-chlorotoluene	< 0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
4-chlorotoluene	< 0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
tert-butylbenzene	< 0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
1,2,4-trimethylbenzene	60	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
sec-butylbenzene	7.2	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
1,3-dichlorobenzene	< 0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
4-isopropyltoluene	4.1	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
1,4-dichlorobenzene	< 0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
1,2-dichlorobenzene	< 0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
n-butylbenzene	< 0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
1,2-dibromo-3-chloropropane (DBCP)	< 0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
1,2,4-trichlorobenzene	< 0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
1,3,5-trichlorobenzene	< 0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
hexachlorobutadiene	< 0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
naphthalene	6.8	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
1,2,3-trichlorobenzene	< 0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
Surrogate Recovery		Limits							
dibromofluoromethane SUR	97	78-114	%	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
toluene-D8 SUR	103	88-110	%	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
4-bromofluorobenzene SUR	99	86-115	%	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
a,a,a-trifluorotoluene SUR	91	70-130	%	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
Lab ID: 15945

Lab Number: 15945-005

Sample ID: TP-11-SB (3-4)

Matrix: Solid Percent Dry: 64.3 %

Sampled: 12/29/08 10:30		Quant		instr Dil'n	Prep		Ana	alvsis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
dichlorodifluoromethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
chloromethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
vinyl chloride	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
bromomethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
chloroethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
trichlorofluoromethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
diethyl ether	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
acetone	< 4	4	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
1,1-dichloroethene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
methylene chloride	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
carbon disulfide	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
methyl t-butyl ether (MTBE)	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
trans-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
isopropyl ether (DIPE)	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
ethyi t-butyi ether (ETBE)	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
1,1-dichloroethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
t-butanol (TBA)	< 4	4	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
2-butanone (MEK)	< 0.4	0.4	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
2,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
cis-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
chloroform	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
bromochloromethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
tetrahydrofuran (THF)	< 0.7	0.7	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
1,1,1-trichloroethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
1,1-dichloropropene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
t-amyl-methyl ether (TAME)	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
carbon tetrachloride	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
1,2-dichloroethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
benzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
trichloroethene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
1,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
bromodichloromethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
1,4-dioxane	< 4	4	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
dibromomethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
4-methyl-2-pentanone (MIBK)	< 0.7	0.7	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
cis-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
toluene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
trans-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
2-hexanone	< 0.7	0.7	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
1,1,2-trichloroethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
1,3-dichloropropane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
tetrachloroethene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
dibromochloromethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
1,2-dibromoethane (EDB)	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B

Lab ID: 15945

Lab Number: 15945-005

Sample ID: TP-11-SB (3-4)

Matrix: Solid Percent Dry: 64.3 %

Sampled: 12/29/08 10:30		Quant	Instr Dil'n		Prep	p Analysis			
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
chlorobenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
1,1,1,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
ethylbenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
m&p-xylenes	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
o-xylene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
styrene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
bromoform	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
isopropylbenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
1,1,2,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
1,2,3-trichloropropane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
n-propylbenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
bromobenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
1,3,5-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
2-chiorotoluene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
4-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
tert-butylbenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
1,2,4-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
sec-butylbenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
1,3-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
4-isopropyltoluene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
1,4-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
1,2-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
n-butylbenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
1,2-dibromo-3-chloropropane (DBCP)	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
1,2,4-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
1,3,5-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
hexachlorobutadiene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
naphthalene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
1,2,3-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
Surrogate Recovery		Limits							
dibromofluoromethane SUR	97	78-114	%	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
toluene-D8 SUR	99	88-110	%	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
4-bromofluorobenzene SUR	98	86-115	%	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
a,a,a-trifluorotoluene SUR	104	70-130	%	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B

Lab ID: 15945

Lab Number: 15945-006

Sample ID: TP-11-SB (3-4) DUP

Matrix: Solid Percent Dry: 69.3 %

Sampled: 12/29/08 10:30		Quant		Instr Dil'n	Prep		Analysis		
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
dichlorodifluoromethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
chloromethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
vinyl chloride	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
bromomethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
chloroethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
trichlorofluoromethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
diethyl ether	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
acetone	< 3	3	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
1,1-dichloroethene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
methylene chloride	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
carbon disulfide	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
methyl t-butyl ether (MTBE)	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
trans-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
isopropyl ether (DIPE)	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
ethyl t-butyl ether (ETBE)	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
1,1-dichloroethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
t-butanol (TBA)	< 3	3	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
2-butanone (MEK)	< 0.4	0.4	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
2,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
cis-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
chloroform	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
bromochloromethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
tetrahydrofuran (THF)	< 0.6	0.6	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
1,1,1-trichloroethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
1,1-dichloropropene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
t-amyl-methyl ether (TAME)	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
carbon tetrachloride	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
1,2-dichloroethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
benzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
trichloroethene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
1,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
bromodichloromethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
1,4-dioxane	< 3	3	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
dibromomethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
4-methyl-2-pentanone (MIBK)	< 0.6	0.6	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
cis-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
toluene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
trans-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
2-hexanone	< 0.6	0.6	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
1,1,2-trichloroethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
1,3-dichloropropane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
tetrachloroethene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
dibromochloromethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
1,2-dibromoethane (EDB)	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B

Lab ID: 15945

Lab Number: 15945-006

Sample ID: TP-11-SB (3-4) DUP

Matrix: Solid Percent Dry: 69.3 %

Sampled: 12/29/08 10:30		Quant		Instr Dil'n	Prep		Ana	alysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
chlorobenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
1,1,1,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
ethylbenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
m&p-xylenes	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
o-xylene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
styrene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
bromoform	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
isopropylbenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
1,1,2,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
1,2,3-trichloropropane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
n-propylbenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
bromobenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
1,3,5-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
2-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
4-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
tert-butylbenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
1,2,4-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
sec-butylbenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
1,3-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
4-isopropyltoluene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
1,4-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
1,2-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
n-butylbenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
1,2-dibromo-3-chloropropane (DBCP)	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
1,2,4-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
1,3,5-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
hexachlorobutadiene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
naphthalene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
1,2,3-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
Surrogate Recovery		Limits							
dibromofluoromethane SUR	96	78-114	%	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
toluene-D8 SUR	98	88-110	%	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
4-bromofluorobenzene SUR	89	86-115	%	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
a,a,a-trifluorotoluene SUR	99	70-130	%	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B

Lab ID: 15945

Lab Number: 15945-010

Sample ID: TP-1-SB (2.5-4.5)

Matrix: Solid Percent Dry: 83.3 %

Sampled: 12/29/08 12:45		Quant		Instr Dil'n	Prep		Analysis		
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
dichlorodifluoromethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
chloromethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
vinyl chloride	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
bromomethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
chloroethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
trichlorofluoromethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
diethyl ether	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
acetone	< 2	2	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
1,1-dichloroethene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
methylene chloride	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
carbon disulfide	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
methyl t-butyl ether (MTBE)	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
trans-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
isopropyl ether (DIPE)	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
ethyl t-butyl ether (ETBE)	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
1,1-dichloroethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
t-butanol (TBA)	< 2	2	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
2-butanone (MEK)	< 0.3	0.3	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
2,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
cis-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
chloroform	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
bromochloromethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
tetrahydrofuran (THF)	< 0.4	0.4	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
1,1,1-trichloroethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
1,1-dichloropropene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
t-amyl-methyl ether (TAME)	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
carbon tetrachloride	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
1,2-dichloroethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
benzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
trichloroethene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
1,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
bromodichloromethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
1,4-dioxane	< 2	2	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
dibromomethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
4-methyl-2-pentanone (MIBK)	< 0.4	0.4	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
cis-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
toluene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
trans-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
2-hexanone	< 0.4	0.4	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
1,1,2-trichloroethane	< 0.1	0.1	uq/q	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
1,3-dìchloropropane	< 0.1	0.1	ua/a	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
tetrachloroethene	< 0.1	0.1	ua/a	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
dibromochloromethane	< 0.1	0.1	ua/a	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
1,2-dibromoethane (EDB)	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
,		~ . ,	-3'9	•					21122000 (02000

Lab ID: 15945

Lab Number: 15945-010

Sample ID: TP-1-SB (2.5-4.5)

Matrix: Solid Percent Dry: 83.3 %

Sampled: 12/29/08 12:45		Quant		Instr Dil'n	Prep		Ana	alysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
chlorobenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
1,1,1,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
ethylbenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
m&p-xylenes	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
o-xylene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
styrene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
bromoform	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
isopropylbenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	1 7:1 9	SW5035A8260B
1,1,2,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
1,2,3-trichloropropane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
n-propylbenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
bromobenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
1,3,5-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
2-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
4-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
tert-butylbenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
1,2,4-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
sec-butylbenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
1,3-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
4-isopropyltoluene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
1,4-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
1,2-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
n-butylbenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
1,2-dibromo-3-chloropropane (DBCP)	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
1,2,4-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
1,3,5-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
hexachlorobutadiene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
naphthalene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
1,2,3-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
Surrogate Recovery		Limits							
dibromofluoromethane SUR	97	78-114	%	1	LMM 1/5/09	1930	1/7/09	17: 1 9	SW5035A8260B
toluene-D8 SUR	96	88-110	%	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
4-bromofluorobenzene SUR	96	86-115	%	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
a.a.a-trifluorotoluene SUR	109	70-130	%	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B

Lab ID: 15945

Lab Number: 15945-011

Sample ID: TP-4A-SB (2-3)

Matrix: Solid Percent Dry: 89.2 %

Parameter Result Limit Units Factor Analyst Date Batch Date Time Referen dichlorodifluoromethane < 0.1 0.1 ug/g 1 LMM 1/5/09 1930 1/7/09 16:49 SW503 chloromethane < 0.1 0.1 ug/g 1 LMM 1/5/09 1930 1/7/09 16:49 SW503 vinyl chloride < 0.1 0.1 ug/g 1 LMM 1/5/09 1930 1/7/09 16:49 SW503 bromomethane < 0.1 0.1 ug/g 1 LMM 1/5/09 1930 1/7/09 16:49 SW503 chloroethane < 0.1 0.1 ug/g 1 LMM 1/5/09 1930 1/7/09 16:49 SW503 acetone < 2 2 ug/g 1 LMM 1/5/09 1930 1/7/09 16:49 SW503 idithyl ether < 0.1 0.1 ug/g 1 <	
dichlorodifluoromethane < 0.1 0.1 ug/g 1 LMM 1/5/09 1930 1/7/09 16:49 SW503 chloromethane < 0.1 0.1 ug/g 1 LMM 1/5/09 1930 1/7/09 16:49 SW503 vinyl chloride < 0.1 0.1 ug/g 1 LMM 1/5/09 1930 1/7/09 16:49 SW503 bromomethane < 0.1 0.1 ug/g 1 LMM 1/5/09 1930 1/7/09 16:49 SW503 chloroethane < 0.1 0.1 ug/g 1 LMM 1/5/09 1930 1/7/09 16:49 SW503 chloroethane < 0.1 0.1 ug/g 1 LMM 1/5/09 1930 1/7/09 16:49 SW503 dicthyl ether < 0.1 0.1 ug/g 1 LMM 1/5/09 1930 1/7/09 16:49 SW503 acetone < 2 2 ug/g 1 LMM 1/5/09 1930 1/7/09 16:49 SW503 carbon disulfide < 0.1 0.1 ug/g 1 LMM 1/5/09 19	;e
chloromethane < 0.1	A8260B
vinyl chloride < 0.1	A8260B
bromomethane < 0.1 0.1 ug/g 1 LMM 1/5/09 1930 1/7/09 16:49 SW503: chloroethane < 0.1	A8260B
chloroethane < 0.1	A8260B
trichlorofluoromethane< 0.10.1ug/g1LMM 1/5/0919301/7/0916:49SW5033diethyl ether< 0.1	A8260B
diethyl ether< 0.10.1ug/g1LMM 1/5/0919301/7/0916:49SW5033acetone< 2	A8260B
acetone< 22ug/g1LMM 1/5/0919301/7/0916:49SW50331,1-dichloroethene< 0.1	A8260B
1,1-dichloroethene < 0.1	A8260B
methylene chloride< 0.10.1ug/g1LMM 1/5/0919301/7/0916:49SW5033carbon disulfide< 0.1	A8260B
carbon disulfide< 0.10.1ug/g1LMM 1/5/0919301/7/0916:49SW5033methyl t-butyl ether (MTBE)< 0.1	A8260B
methyl t-butyl ether (MTBE)< 0.10.1ug/g1LMM 1/5/0919301/7/0916:49SW503:trans-1,2-dichloroethene< 0.1	A8260B
trans-1,2-dichloroethene< 0.10.1ug/g1LMM 1/5/0919301/7/0916:49SW5033isopropyl ether (DIPE)< 0.1	A8260B
isopropyl ether (DIPE)< 0.10.1ug/g1LMM 1/5/0919301/7/0916:49SW5039ethyl t-butyl ether (ETBE)< 0.1	A8260B
ethyl t-butyl ether (ETBE)< 0.10.1ug/g1LMM 1/5/0919301/7/0916:49SW50331,1-dichloroethane< 0.1	A8260B
1,1-dichloroethane< 0.10.1ug/g1LMM 1/5/0919301/7/0916:49SW5038t-butanol (TBA)< 2	A8260B
t-butanol (TBA)< 22ug/g1LMM 1/5/0919301/7/0916:49SW50332-butanone (MEK)< 0.2	A8260B
2-butanone (MEK) < 0.2	A8260B
2,2-dichloropropane< 0.10.1ug/g1LMM 1/5/0919301/7/0916:49SW5033cis-1,2-dichloroethene< 0.1	A8260B
cis-1,2-dichloroethene< 0.10.1ug/g1LMM 1/5/0919301/7/0916:49SW5038chloroform< 0.1	A8260B
chloroform < 0.1 0.1 ug/g 1 LMM 1/5/09 1930 1/7/09 16:49 SW5035 bromochloromethane < 0.1 0.1 ug/g 1 LMM 1/5/09 1930 1/7/09 16:49 SW5035	A8260B
bromochloromethane < 0.1 0.1 ug/g 1 LMM 1/5/09 1930 1/7/09 16:49 SW5035	A8260B
	A8260B
tetrahydrofuran (THF) < 0.4 0.4 ug/g 1 LMM 1/5/09 1930 1/7/09 16:49 SW5038	A8260B
1,1,1-trichloroethane < 0.1 0.1 ug/g 1 LMM 1/5/09 1930 1/7/09 16:49 SW503	A8260B
1,1-dichloropropene < 0.1 0.1 ug/g 1 LMM 1/5/09 1930 1/7/09 16:49 SW503	A8260B
t-amyl-methyl ether (TAME) < 0.1 0.1 ug/g 1 LMM 1/5/09 1930 1/7/09 16:49 SW503;	A8260B
carbon tetrachloride < 0.1 0.1 ug/g 1 LMM 1/5/09 1930 1/7/09 16:49 SW503;	A8260B
1,2-dichloroethane < 0.1 0.1 ug/g 1 LMM 1/5/09 1930 1/7/09 16:49 SW5035	A8260B
benzene < 0.1 0.1 ug/g 1 LMM 1/5/09 1930 1/7/09 16:49 SW5035	A8260B
trichloroethene < 0.1 0.1 ug/g 1 LMM 1/5/09 1930 1/7/09 16:49 SW5035	A8260B
1,2-dichloropropane < 0.1 0.1 ug/g 1 LMM 1/5/09 1930 1/7/09 16:49 SW5035	A8260B
bromodichloromethane < 0.1 0.1 ug/g 1 LMM 1/5/09 1930 1/7/09 16:49 SW5035	A8260B
1,4-dioxane < 2 2 ug/g 1 LMM 1/5/09 1930 1/7/09 16:49 SW5035	A8260B
dibromomethane < 0.1 0.1 ug/g 1 LMM 1/5/09 1930 1/7/09 16:49 SW5035	A8260B
4-methyl-2-pentanone (MIBK) < 0.3 0.3 ug/g 1 LMM 1/5/09 1930 1/7/09 16:49 SW5035	A8260B
cis-1,3-dichloropropene < 0.1 0.1 ug/g 1 LMM 1/5/09 1930 1/7/09 16:49 SW5035	A8260B
toluene < 0.1 0.1 ug/g 1 LMM 1/5/09 1930 1/7/09 16:49 SW5035	A8260B
trans-1,3-dichloropropene < 0.1 0.1 ug/g 1 LMM 1/5/09 1930 1/7/09 16:49 SW5035	A8260B
2-hexanone < 0.4 0.4 ug/g 1 LMM 1/5/09 1930 1/7/09 16:49 SW5035	A8260B
1,1,2-trichloroethane < 0.1 0.1 ug/g 1 LMM 1/5/09 1930 1/7/09 16:49 SW5035	A8260B
1,3-dichloropropane < 0.1 0.1 ug/g 1 LMM 1/5/09 1930 1/7/09 16:49 SW5035	A8260B
tetrachloroethene < 0.1 0.1 ug/g 1 LMM 1/5/09 1930 1/7/09 16:49 SW5035	A8260B
dibromochloromethane < 0.1 0.1 ug/g 1 LMM 1/5/09 1930 1/7/09 16:49 SW5035	A8260B
1,2-dibromoethane (EDB) < 0.1 0.1 ug/g 1 LMM 1/5/09 1930 1/7/09 16:49 SW5035	A8260B

Lab ID: 15945

Lab Number: 15945-011

Sample ID: TP-4A-SB (2-3)

Matrix: Solid Percent Dry: 89.2 %

Sampled: 12/29/08 14:30		Quant		lnstr Dil'n	Prep	Prep		alysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
chlorobenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
1,1,1,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
ethylbenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
m&p-xylenes	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
o-xylene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
styrene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
bromoform	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
isopropylbenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
1,1,2,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
1,2,3-trichloropropane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
n-propylbenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
bromobenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
1,3,5-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
2-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
4-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
tert-butylbenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
1,2,4-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
sec-butylbenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
1,3-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
4-isopropyltoluene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
1,4-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
1,2-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
n-butylbenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
1,2-dibromo-3-chloropropane (DBCP)	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
1,2,4-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
1,3,5-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
hexachlorobutadiene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
naphthalene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
1,2,3-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
Surrogate Recovery		Limits							
dibromofluoromethane SUR	99	78-114	%	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
toluene-D8 SUR	99	88-110	%	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
4-bromofluorobenzene SUR	92	86-115	%	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
a,a,a-trifluorotoluene SUR	107	70-130	%	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B

Lab ID: 15945

Lab Number: 15945-012

Sample ID: Trip Blank

Matrix: Solid

Sampled: 12/29/08		Quant		instr Dil'n	Prep	_ / .	Ana	alysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
dichlorodifluoromethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
chloromethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
vinyl chloride	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
bromomethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
chloroethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
trichlorofluoromethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
diethyl ether	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
acetone	< 2	2	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
1,1-dichloroethene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
methylene chloride	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
carbon disulfide	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
methyl t-butyl ether (MTBE)	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
trans-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
isopropyl ether (DIPE)	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
ethyl t-butyl ether (ETBE)	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
1,1-dichloroethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
t-butanol (TBA)	< 2	2	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
2-butanone (MEK)	< 0.3	0.3	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
2,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
cis-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
chloroform	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
bromochloromethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
tetrahydrofuran (THF)	< 0.5	0.5	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
1,1,1-trichloroethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
1,1-dichloropropene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
t-amyl-methyl ether (TAME)	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
carbon tetrachloride	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
1,2-dichloroethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
benzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
trichloroethene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
1,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
bromodichloromethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
1,4-dioxane	< 2	2	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
dibromomethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
4-methyl-2-pentanone (MIBK)	< 0.4	0.4	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
cis-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
toluene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
trans-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
2-hexanone	< 0.5	0.5	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
1,1,2-trichloroethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
1,3-dichloropropane	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
tetrachloroethene	< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
dibromochloromethane	< 0.1	0.1	ug/a	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
1,2-dibromoethane (EDB)	< 0.1	0.1	ua/a	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
· · ·			50						

Lab ID: 15945

Lab Number: 15945-012

Sample ID: Trip Blank

Matrix: Solid

Sampled: 12/29/08		Quant		Instr Dil'n	Pre	p	An	alysis	
Parameter	Result	Limit	Units	Factor	Analyst Da	te Batch	Date	Time	Reference
chlorobenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	9 1930	1/7/09	14:50	SW5035A8260B
1,1,1,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	9 1930	1/7/09	14:50	SW5035A8260B
ethylbenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	9 1930	1/7/09	14:50	SW5035A8260B
m&p-xylenes	< 0.1	0.1	ug/g	1	LMM 1/5/09	9 1930	1/7/09	14:50	SW5035A8260B
o-xylene	< 0.1	0.1	ug/g	1	LMM 1/5/09	9 1930	1/7/09	14:50	SW5035A8260B
styrene	< 0.1	0.1	ug/g	1	LMM 1/5/09	9 1930	1/7/09	14:50	SW5035A8260B
bromoform	< 0.1	0.1	ug/g	1	LMM 1/5/09	9 1930	1/7/09	14:50	SW5035A8260B
isopropylbenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	9 1930	1/7/09	14:50	SW5035A8260B
1,1,2,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 1/5/09	9 1930	1/7/09	14:50	SW5035A8260B
1,2,3-trichloropropane	< 0.1	0.1	ug/g	1	LMM 1/5/09	9 1930	1/7/09	14:50	SW5035A8260B
n-propylbenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	9 1930	1/7/09	14:50	SW5035A8260B
bromobenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	9 1930	1/7/09	14:50	SW5035A8260B
1,3,5-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	9 1930	1/7/09	14:50	SW5035A8260B
2-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 1/5/09	9 1930	1/7/09	14:50	SW5035A8260B
4-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 1/5/09	9 1930	1/7/09	14:50	SW5035A8260B
tert-butylbenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	9 1930	1/7/09	14:50	SW5035A8260B
1,2,4-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	9 1930	1/7/09	14:50	SW5035A8260B
sec-butylbenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	9 1930	1/7/09	14:50	SW5035A8260B
1,3-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	9 1930	1/7/09	14:50	SW5035A8260B
4-isopropyltoluene	< 0.1	0.1	ug/g	1	LMM 1/5/09	9 1930	1/7/09	14:50	SW5035A8260B
1,4-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	9 1930	1/7/09	14:50	SW5035A8260B
1,2-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	9 1930	1/7/09	14:50	SW5035A8260B
n-butylbenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	9 1930	1/7/09	14:50	SW5035A8260B
1,2-dibromo-3-chloropropane (DBCP)	< 0.1	0.1	ug/g	1	LMM 1/5/09	9 1930	1/7/09	14:50	SW5035A8260B
1,2,4-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	9 1930	1/7/09	14:50	SW5035A8260B
1,3,5-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	9 1930	1/7/09	14:50	SW5035A8260B
hexachlorobutadiene	< 0.1	0.1	ug/g	1	LMM 1/5/09	9 1930	1/7/09	14:50	SW5035A8260B
naphthalene	< 0.1	0.1	ug/g	1	LMM 1/5/09	9 1930	1/7/09	14:50	SW5035A8260B
1,2,3-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 1/5/09	9 1930	1/7/09	14:50	SW5035A8260B
Surrogate Recovery		Limits							
dibromofluoromethane SUR	100	78-114	%	1	LMM 1/5/0	9 1930	1/7/09	14:50	SW5035A8260B
toluene-D8 SUR	95	88-110	%	1	LMM 1/5/0	9 1930	1/7/09	14:50	SW5035A8260B
4-bromofluorobenzene SUR	95	86-115	%	1	LMM 1/5/0	9 1930	1/7/09	14:50	SW5035A8260B
a,a,a-trifluorotoluene SUR	102	70-130	%	1	LMM 1/5/09	9 1930	1/7/09	14:50	SW5035A8260B

Lab ID: 15945

Lab Number: 15945-002

Sample ID: TP-7-SB (4.5-6.5)

Matrix: Solid Percent Dry: 80.6 %

Sampled: 12/29/08 9:00	Quant		Instr Dil'n			Prep		Analysis		
Parameter	Result	Limit	Units	Factor	Analys	Date	Batch	Date	Time	Reference
Diesel Range Organics (DRO) C10-C28	< 240	240	ug/g	1	JLZ	1/5/09	1932	1/6/09	15:54	SW3550B8015B
Surrogate Recovery		Limits								
2-fluorobiphenyl SUR	100	40-140	%	1	JLZ	1/5/09	1932	1/6/09	15:54	SW3550B8015B
o-terphenyl SUR	113	40-140	%	1	JLZ	1/5/09	1932	1/6/09	15:54	SW3550B8015B
naphthalene	< 0.6	0.6	ug/g	1	AJD	1/5/09	1931	1/6/09	12:36	SW3550B8270C
2-methylnaphthalene	< 0.6	0.6	ug/g	1	AJD	1/5/09	1931	1/6/09	12:36	SW3550B8270C
acenaphthylene	< 0.6	0.6	ug/g	1	AJD	1/5/09	1931	1/6/09	12:36	SW3550B8270C
acenaphthene	< 0.6	0.6	ug/g	1	AJD	1/5/09	19 31	1/6/09	12:36	SW3550B8270C
dibenzofuran	< 0.6	0.6	ug/g	1	AJD	1/5/09	193 1	1/6/09	12:36	SW3550B8270C
fluorene	< 0.6	0.6	ug/g	1	AJD	1/5/09	1931	1/6/09	12:36	SW3550B8270C
phenanthrene	< 0.6	0.6	ug/g	1	AJD	1/5/09	1931	1/6/09	12:36	SW3550B8270C
anthracene	< 0.6	0.6	ug/g	1	AJD	1/5/09	1931	1/6/09	12:36	SW3550B8270C
fluoranthene	< 0.6	0.6	ug/g	1	AJD	1/5/09	1931	1/6/09	12:36	SW3550B8270C
pyrene	< 0.6	0.6	ug/g	1	AJD	1/5/09	1931	1/6/09	12:36	SW3550B8270C
benzo(a)anthracene	< 0.6	0.6	ug/g	1	AJD	1/5/09	1931	1/6/09	12:36	SW3550B8270C
chrysene	< 0.6	0.6	ug/g	1	AJD	1/5/09	1931	1/6/09	12:36	SW3550B8270C
benzo(b)fluoranthene	< 0.6	0.6	ug/g	1	AJD	1/5/09	1931	1/6/09	12:36	SW3550B8270C
benzo(k)fluoranthene	< 0.6	0.6	ug/g	1	AJD	1/5/09	1931	1/6/09	12:36	SW3550B8270C
benzo(a)pyrene	< 0.6	0.6	ug/g	1	AJD	1/5/09	1931	1/6/09	12:36	SW3550B8270C
indeno(1,2,3-cd)pyrene	< 0.6	0.6	ug/g	1	AJD	1/5/09	1931	1/6/09	12:36	SW3550B8270C
dibenzo(a,h)anthracene	< 0.6	0.6	ug/g	1	AJD	1/5/09	1931	1/6/09	12:36	SW3550B8270C
benzo(g,h,i)perylene	< 0.6	0.6	ug/g	1	AJD	1/5/09	1931	1/6/09	12:36	SW3550B8270C
Surrogate Recovery		Limits								
2-fluorobiphenyl SUR	97	43-116	%	1	AJD	1/5/09	1931	1/6/09	12:36	SW3550B8270C
o-terphenyl SUR	89	33-141	%	1	AJD	1/5/09	1931	1/6/09	12:36	SW3550B8270C

Lab ID: 15945

Lab Number: 15945-003

Sample ID: TP-16-SS (0-0.5)

Matrix: Solid Percent Dry: 70.8 %

Results are expressed on a dry weight basis.

Sampled: 12/29/08 9:50		Quant		Instr Dil'n		Prep		Ana	alysis	
Parameter	Result	Limit	Units	Factor	Analys	st Date	Batch	Date	Time	Reference
Diesel Range Organics (DRO) C10-C28	39000	2800	ug/g	10	JLZ	1/5/09	1932	1/6/09	17:43	SW3550B8015B
Surrogate Recovery		Limits								
2-fluorobiphenyl SUR	DOR	40-140	%	10	JLZ	1/5/09	1932	1/6/09	17:43	SW3550B8015B
o-terphenyl SUR	DÓR	40-140	%	10	JLZ	1/5/09	1932	1/6/09	17:43	SW3550B8015B
DOR = Diluted out of range.										
naphthalene	8.5 M	0.7	ug/g	1	AJD	1/5/09	1931	1/6/09	13:13	SW3550B8270C
2-methylnaphthalene	32	0.7	ug/g	1	AJD	1/5/09	1931	1/6/09	13:13	SW3550B8270C
acenaphthylene	< 0.7 M	0.7	ug/g	1	AJD	1/5/09	1931	1/6/09	13:13	SW3550B8270C
acenaphthene	< 0.7 M	0.7	ug/g	1	AJD	1/5/09	1931	1/6/09	13:13	SW3550B8270C
dibenzofuran	2.4 M	0.7	ug/g	1	AJD	1/5/09	1931	1/6/09	13:13	SW3550B8270C
fluorene	5.5 M	0.7	ug/g	1	AJD	1/5/09	1931	1/6/09	13:13	SW3550B8270C
phenanthrene	4.9 M	0.7	ug/g	1	AJD	1/5/09	1931	1/6/09	13:13	SW3550B8270C
anthracene	0.8 M	0.7	ug/g	1	AJD	1/5/09	1931	1/6/09	13:13	SW3550B8270C
fluoranthene	1.1 M	0.7	ug/g	1	AJD	1/5/09	1931	1/6/09	13:13	SW3550B8270C
pyrene	3.9 M	0.7	ug/g	1	AJD	1/5/09	1931	1/6/09	13:13	SW3550B8270C
benzo(a)anthracene	< 0.7	0.7	ug/g	1	AJD	1/5/09	1931	1/6/09	13:13	SW3550B8270C
chrysene	< 0.7	0.7	ug/g	1	AJD	1/5/09	1931	1/6/09	13:13	SW3550B8270C
benzo(b)fluoranthene	< 0.7	0.7	ug/g	1	AJD	1/5/09	1931	1/6/09	13:13	SW3550B8270C
benzo(k)fluoranthene	< 0.7	0.7	ug/g	1	AJD	1/5/09	1931	1/6/09	13:13	SW3550B8270C
benzo(a)pyrene	< 0.7	0.7	ug/g	1	AJD	1/5/09	1931	1/6/09	13:13	SW3550B8270C
indeno(1,2,3-cd)pyrene	< 0.7	0.7	ug/g	1	AJD	1/5/09	1931	1/6/09	13:13	SW3550B8270C
dibenzo(a,h)anthracene	< 0.7	0.7	ug/g	1	AJD	1/5/09	1931	1/6/09	13:13	SW3550B8270C
benzo(g,h,i)perylene	< 0.7	0.7	ug/g	1	AJD	1/5/09	1931	1/6/09	13:13	SW3550B8270C
Surrogate Recovery		Limits								
2-fluorobiphenyl SUR	127 #	43-116	%	1	AJD	1/5/09	1931	1/6/09	13:13	SW3550B8270C
# = The surrogate showed r	recovery ou	tside the	accepta	nce limits a	as a res	ult of co-e	eluting hy	drocarbo	ons.	
o-terphenyl SUR	99	33-141	%	1	AJD	1/5/09	1931	1/6/09	13:13	SW3550B8270C
M = The percent recovery for the matrix	c spike wa	s above ti	he acce	eptance cr	iteria. J	All other	batch Q	C was ac	cceptable	. Sample

heterogeneity suspected.

.

Lab ID: 15945

Lab Number: 15945-005

Sample ID: TP-11-SB (3-4)

Matrix: Solid Percent Dry: 64.3 %

Sampled: 12/29/08 10:30		Quant		Instr Dil'n		Prep		Ana	alysis	
Parameter	Result	Limit	Units	Factor	Analysi	t Date	Batch	Date	Time	Reference
Diesel Range Organics (DRO) C10-C28	< 290	290	ug/g	1	JLZ	1/5/09	1932	1/6/09	16:07	SW3550B8015B
Surrogate Recovery		Limits								
2-fluorobiphenyl SUR	108	40-140	%	1	JLZ	1/5/09	1932	1/6/09	16:07	SW3550B8015B
o-terphenyl SUR	126	40-140	%	1	JLZ	1/5/09	1932	1/6/09	16:07	SW3550B8015B
naphthalene	< 0.7	0.7	ug/g	1	AJD	1/5/09	1931	1/6/09	13:51	SW3550B8270C
2-methylnaphthalene	< 0.7	0.7	ug/g	1	AJD	1/5/09	1 931	1/6/09	13:51	SW3550B8270C
acenaphthylene	< 0.7	0.7	ug/g	1	AJD	1/5/09	1931	1/6/09	13:51	SW3550B8270C
acenaphthene	< 0.7	0.7	ug/g	1	AJD	1/5/09	1931	1/6/09	13:51	SW3550B8270C
dibenzofuran	< 0.7	0.7	ug/g	1	AJD	1/5/09	1931	1/6/09	13:51	SW3550B8270C
fluorene	< 0.7	0.7	ug/g	1	AJD	1/5/09	1931	1/6/09	13:51	SW3550B8270C
phenanthrene	< 0.7	0.7	ug/g	1	AJD	1/5/09	1931	1/6/09	13:51	SW3550B8270C
anthracene	< 0.7	0.7	ug/g	1	AJD	1/5/09	1931	1/6/09	13:51	SW3550B8270C
fluoranthene	< 0.7	0.7	ug/g	1	AJD	1/5/09	1931	1/6/09	13:51	SW3550B8270C
pyrene	< 0.7	0.7	ug/g	1	AJD	1/5/09	1931	1/6/09	13:51	SW3550B8270C
benzo(a)anthracene	< 0.7	0.7	ug/g	1	AJD	1/5/09	1931	1/6/09	13:51	SW3550B8270C
chrysene	< 0.7	0.7	ug/g	1	AJD	1/5/09	1931	1/6/09	13:51	SW3550B8270C
benzo(b)fluoranthene	< 0.7	0.7	ug/g	1	AJD	1/5/09	1931	1/6/09	13:51	SW3550B8270C
benzo(k)fluoranthene	< 0.7	0.7	ug/g	1	AJD	1/5/09	1931	1/6/09	13:51	SW3550B8270C
benzo(a)pyrene	< 0.7	0.7	ug/g	1	AJD	1/5/09	1931	1/6/09	13:51	SW3550B8270C
indeno(1,2,3-cd)pyrene	< 0.7	0.7	ug/g	1	AJD	1/5/09	1931	1/6/09	13:51	SW3550B8270C
dibenzo(a,h)anthracene	< 0.7	0.7	ug/g	1	AJD	1/5/09	193 1	1/6/09	13:51	SW3550B8270C
benzo(g,h,i)perylene	< 0.7	0.7	ug/g	1	AJD	1/5/09	1931	1/6/09	13:51	SW3550B8270C
Surrogate Recovery		Limits								
2-fluorobiphenyl SUR	104	43-116	%	1	AJD	1/5/09	1931	1/6/09	13:51	SW3550B8270C
o-terphenyl SUR	104	33-141	%	1	AJD	1/5/09	1931	1/6/09	13:51	SW3550B8270C

Lab ID: 15945

Lab Number: 15945-006

.

Sample ID: TP-11-SB (3-4) DUP

Matrix: Solid Percent Dry: 69.3 %

Sampled: 12/29/08 10:30		Quant		Instr Dil'n		Prep		Ana	alysis	
Parameter	Result	Limit	Units	Factor	Analys	t Date	Batch	Date	Time	Reference
Diesel Range Organics (DRO) C10-C28	< 290	290	ug/g	1	JLZ	1/5/09	1932	1/6/09	16:21	SW3550B8015B
Surrogate Recovery		Limits								
2-fluorobiphenyl SUR	103	40-140	%	1	JLZ	1/5/09	1932	1/6/09	16:21	SW3550B8015B
o-terphenyl SUR	112	40-140	%	1	JLZ	1/5/09	1932	1/6/09	16:21	SW3550B8015B
naphthalene	< 0.7	0.7	ug/g	1	AJD	1/5/09	1931	1/6/09	14:29	SW3550B8270C
2-methylnaphthalene	< 0.7	0.7	ug/g	1	AJD	1/5/09	1931	1/6/09	14:29	SW3550B8270C
acenaphthylene	< 0.7	0.7	ug/g	1	AJD	1/5/09	1931	1/6/09	14:29	SW3550B8270C
acenaphthene	< 0.7	0.7	ug/g	1	AJD	1/5/09	1931	1/6/09	14:29	SW3550B8270C
dibenzofuran	< 0.7	0.7	ug/g	1	AJD	1/5/09	1931	1/6/09	14:29	SW3550B8270C
fluorene	< 0.7	0.7	ug/g	1	AJD	1/5/09	1 931	1/6/09	14:29	SW3550B8270C
phenanthrene	< 0.7	0.7	ug/g	1	AJD	1/5/09	1931	1/6/09	14:29	SW3550B8270C
anthracene	< 0.7	0.7	ug/g	1	AJD	1/5/09	1931	1/6/09	14:29	SW3550B8270C
fluoranthene	< 0.7	0.7	ug/g	1	AJD	1/5/09	1931	1/6/09	14:29	SW3550B8270C
pyrene	< 0.7	0.7	ug/g	1	AJD	1/5/09	1931	1/6/09	14:29	SW3550B8270C
benzo(a)anthracene	< 0.7	0.7	ug/g	1	AJD	1/5/09	1931	1/6/09	14:29	SW3550B8270C
chrysene	< 0.7	0.7	ug/g	1	AJD	1/5/09	1931	1/6/09	14:29	SW3550B8270C
benzo(b)fluoranthene	< 0.7	0.7	ug/g	1	AJD	1/5/09	1931	1/6/09	14:29	SW3550B8270C
benzo(k)fluoranthene	< 0.7	0.7	ug/g	1	AJD	1/5/09	1931	1/6/09	14:29	SW3550B8270C
benzo(a)pyrene	< 0.7	0.7	ug/g	1	AJD	1/5/09	1931	1/6/09	14:29	SW3550B8270C
indeno(1,2,3-cd)pyrene	< 0.7	0.7	ug/g	1	AJD	1/5/09	1931	1/6/09	14:29	SW3550B8270C
dibenzo(a,h)anthracene	< 0.7	0.7	ug/g	1	AJD	1/5/09	1931	1/6/09	14:29	SW3550B8270C
benzo(g,h,i)perylene	< 0.7	0.7	ug/g	1	AJD	1/5/09	1931	1/6/09	14:29	SW3550B8270C
Surrogate Recovery		Limits								
2-fluorobiphenyl SUR	93	43-116	%	1	AJD	1/5/09	1931	1/6/09	14:29	SW3550B8270C
o-terphenyl SUR	87	33-141	%	1	AJD	1/5/09	1931	1/6/09	14:29	SW3550B8270C

Lab ID: 15945

Lab Number: 15945-010

Sample ID: TP-1-SB (2.5-4.5)

Matrix: Solid Percent Dry: 83.3 %

Sampled: 12/29/08 12:45		Quant		Instr Dil'n		Prep		Ana	alysis	
Parameter	Result	Limit	Units	Factor	Analys	t Date	Batch	Date	Time	Reference
Diesel Range Organics (DRO) C10-C28	< 230	230	ug/g	1	JLZ	1/5/09	1932	1/6/09	16:35	SW3550B8015B
Surrogate Recovery		Limits								
2-fluorobiphenyl SUR	#	40-140	%	1	JLZ	1/5/09	1932	1/6/09	16:35	SW3550B8015B
o-terphenyl SUR	113	40-140	%	1	JLZ	1/5/09	1932	1/6/09	16:35	SW3550B8015B
# = The surrogate could not be distingu	iished. R	e-extractio	on show	red similar	r results	s. Matrix	interfer	ence su:	spected.	
nanhfhalana	< 0.6	0.6	na/a	1	A.ID	1/5/09	1931	1/6/09	15.06	SW3550B8270C
2-methylnanhthalene	< 0.6	0.6	ug/g	1	A.ID	1/5/09	1931	1/6/09	15:06	SW3550B8270C
acenanhthylene	< 0.6	0.0	na/a	1	A.ID	1/5/09	1931	1/6/09	15:06	SW3550B8270C
acenaphthana	< 0.6	0.6	ug/g	1		1/5/09	1931	1/6/09	15:06	SW3550B8270C
dibenzofuran	< 0.6	0.0	ug/g	1		1/5/09	1931	1/6/09	15:06	SW3550B8270C
fluorene	< 0.0	0.6	ug/g	1	AID	1/5/09	1931	1/6/09	15:06	SW3550B8270C
phoponthrono	< 0.0 < 0.6	0.0	ug/g	1		1/5/00	1031	1/6/09	15:06	SW3550B8270C
onthracana	< 0.0	0.0	ug/g	1		1/5/00	1031	1/6/00	15:06	SW/3550B8270C
fluoranthono	< 0.0	0.0	ug/g	1		1/5/00	1031	1/6/09	15:06	SW/3550B8270C
	< 0.0	0.0	ug/g	1		1/5/00	1031	1/6/00	15:06	SW/3550B8270C
banza (a) anthrasana	< 0.0	0.0	ug/g	י ז		1/5/00	1031	1/6/00	15:06	SW3550B8270C
benzo(a)antiracene	< 0.0	0.0	uy/y	1		1/5/09	1021	1/6/00	15.00	SW3550B9270C
chrysene	< 0.0	0.0	uy/y	1	AJD	1/5/09	1931	1/0/09	15.00	SW3550D0270C
	< 0.0	0.0	ug/g	1	AJD	1/5/09	1001	1/0/09	10.00	SW355006270C
benzo(k)fluorantnene	< 0.6	0.6	ug/g	1	AJD	1/5/09	1931	1/0/09	15:06	SW3550B8270C
benzo(a)pyrene	< 0.6	0.6	ug/g	1	AJD	1/5/09	1931	1/6/09	15:06	SW3550B8270C
indeno(1,2,3-cd)pyrene	< 0.6	0.6	ug/g	1	AJD	1/5/09	1931	1/6/09	15:06	SW3550B8270C
dibenzo(a,h)anthracene	< 0.6	0.6	ug/g	1	AJD	1/5/09	1931	1/6/09	15:06	SW3550B8270C
benzo(g,h,i)perylene	< 0.6	0.6	ug/g	1	AJD	1/5/09	1931	1/6/09	15:06	SW3550B8270C
Surrogate Recovery		Limits								
2-fluorobiphenyl SUR	94	43-116	%	1	AJD	1/5/09	1931	1/6/09	15:06	SW3550B8270C
o-terphenyl SUR	87	33-141	%	1	AJD	1/5/09	1931	1/6/09	15:06	SW3550B8270C

Lab ID: 15945

Lab Number: 15945-011

Sample ID: TP-4A-SB (2-3)

Percent Dry: 89.2 % Matrix: Solid

Sampled: 12/29/08 14:30		Quant		Instr Dil'n		Prep		Ana	lysis	
Parameter	Result	Limit	Units	Factor	Analyst	Date	Batch	Date	Time	Reference
Diesel Range Organics (DRO) C10-C28	< 210	210	ug/g	1	JLZ	1/5/09	1932	1/6/09	16:48	SW3550B8015B
Surrogate Recovery		Limits								
2-fluorobiphenyl SUR	97	40-140	%	1	JLZ	1/5/09	1932	1/6/09	16:48	SW3550B8015B
o-terphenyl SUR	108	40-140	%	1	JLZ	1/5/09	1932	1/6/09	16:48	SW3550B8015B
naphthalene	< 0.5	0.5	ug/g	1	AJD	1/5/09	1931	1/6/09	15:44	SW3550B8270C
2-methylnaphthalene	< 0.5	0.5	ug/g	1	AJD	1/5/09	1931	1/6/09	15:44	SW3550B8270C
acenaphthylene	< 0.5	0.5	ug/g	1	AJD	1/5/09	1931	1/6/09	15:44	SW3550B8270C
acenaphthene	< 0.5	0.5	ug/g	1	AJD	1/5/09	1931	1/6/09	15:44	SW3550B8270C
dibenzofuran	< 0.5	0.5	ug/g	1	AJD	1/5/09	1931	1/6/09	15:44	SW3550B8270C
fluorene	< 0.5	0.5	ug/g	1	AJD	1/5/09	1931	1/6/09	15:44	SW3550B8270C
phenanthrene	< 0.5	0.5	ug/g	1	AJD	1/5/09	1931	1/6/09	15:44	SW3550B8270C
anthracene	< 0.5	0.5	ug/g	1	AJD	1/5/09	1 931	1/6/09	15:44	SW3550B8270C
fluoranthene	< 0.5	0.5	ug/g	1	AJD	1/5/09	1931	1/6/09	15:44	SW3550B8270C
pyrene	< 0.5	0.5	ug/g	1	AJD	1/5/09	1931	1/6/09	15:44	SW3550B8270C
benzo(a)anthracene	< 0.5	0.5	ug/g	1	AJD	1/5/09	1931	1/6/09	15:44	SW3550B8270C
chrysene	< 0.5	0.5	ug/g	1	AJD	1/5/09	1931	1/6/09	15:44	SW3550B8270C
benzo(b)fluoranthene	< 0.5	0.5	ug/g	1	AJD	1/5/09	1931	1/6/09	15:44	SW3550B8270C
benzo(k)fluoranthene	< 0.5	0.5	ug/g	1	AJD	1/5/09	1931	1/6/09	15:44	SW3550B8270C
benzo(a)pyrene	< 0.5	0.5	ug/g	1	AJD	1/5/09	1931	1/6/09	15:44	SW3550B8270C
indeno(1,2,3-cd)pyrene	< 0.5	0.5	ug/g	1	AJD	1/5/09	1931	1/6/09	15:44	SW3550B8270C
dibenzo(a,h)anthracene	< 0.5	0.5	ug/g	1	AJD	1/5/09	1931	1/6/09	15:44	SW3550B8270C
benzo(g,h,i)perylene	< 0.5	0.5	ug/g	1	AJD	1/5/09	1931	1/6/09	15:44	SW3550B8270C
Surrogate Recovery		Limits								
2-fluorobiphenyl SUR	82	43-116	%	1	AJD	1/5/09	1931	1/6/09	15:44	SW3550B8270C
o-terphenyl SUR	78	33-141	%	1	AJD	1/5/09	1931	1/6/09	15:44	SW3550B8270C

Lab ID: 15945

Lab Number: 15945-002

Sample ID: TP-7-SB (4.5-6.5)

Matrix: Solid Percent Dry: 80.6 %

Sampled:	12/29/08	3 9:00		Quant		Instr Dil'n	Prep		An	alysis	
Parameter		Re	sult	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
Arsenic			2.4	0.8	ug/g	1	BJS 1/8/09	1935	1/8/09	16:10	SW3051A6010B
Barium			54	4	ug/g	1	BJS 1/8/09	1935	1/8/09	16:10	SW3051A6010B
Cadmium		<	0.2	0.2	ug/g	1	BJS 1/8/09	1935	1/8/09	16:10	SW3051A6010B
Chromium			14	4	ug/g	1	BJS 1/8/09	1935	1/8/09	16:10	SW3051A6010B
Lead			4.1	0.8	ug/g	1	BJS 1/8/09	1935	1/8/09	16:10	SW3051A6010B
Mercury		< 0	.02	0.02	ug/g	1	BJS	0900061	1/9/09		SW7470A
Selenium			< 2	2	ug/g	1	BJS 1/8/09	1935	1/8/09	16:10	SW3051A6010B
Silver		I	0.3	0.3	ug/g	1	BJS 1/8/09	1935	1/8/09	1 6:10	SW3051A6010B
Lab Number: Sample ID: Matrix:	15945-0 TP-16-S Solid	03 S (0-0.5) Percent Dry: 70.8	%	Results	s are exp	pressed o	n a dry weight	basis.			
Sampled:	12/29/08	3 9:50		Quant		Instr Dil'n	Prep		An	alysis	
Parameter		Re	sult	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
Arsenic		:	5.4	0.8	ug/g	1	BJS 1/8/09	1935	1/8/09	16:16	SW3051A6010B
Barium			46	4	ug/g	1	BJS 1/8/09	1935	1/8/09	16:16	SW3051A6010B
Cadmium		< ().2	0.2	ug/g	1	BJS 1/8/09	1935	1/8/09	16:16	SW3051A6010B
Chromium			17	4	ug/g	1	BJS 1/8/09	1935	1/8/09	16:16	SW3051A6010B
Lead			18	0.8	ug/g	1	BJS 1/8/09	1935	1/8/09	16:16	SW3051A6010B
Mercury		< 0.	02 M	0.02	ug/g	1	BJS	0900061	1/9/09		SW7470A
M : Matrix spike	e recover	/ was 40%, outside i	the co	ontrol lin	nits of 75	5-125%. M	atrix interferen	ce suspe	cted.		
Selenium			< 2	2	ug/g	1	BJS 1/8/09	1935	1/8/09	16:16	SW3051A6010B
Silver).4	0.2	ug/g	1	BJS 1/8/09	1935	1/8/09	16:16	SW3051A6010B
Lab Number: Sample ID: Matrix:	15945-0 TP-11-S Solid	05 B (3-4) Percent Dry: 64 3 (<i>V</i> 6	Results	are exr	aressed o	n a dry weight	hasis			
Sampled	12/29/08	10.30		Ouent				54313.			
Parameter	12,20,00	Re	tlis	Quant	Units	Eactor	Analyst Date	Batch	An Date	alysis Time	Poforonco
Arsenic			13	0.9	ua/a	1	BJS 1/8/09	1935	1/8/09	16:21	SW3051A6010B
Barium			32	5	ua/a	1	BJS 1/8/09	1935	1/8/09	16:21	SW3051A6010B
Cadmium		< ().2	0.2	ua/a	1	BJS 1/8/09	1935	1/8/09	16:21	SW3051A6010B
Chromium			11	5	ua/a	1	BJS 1/8/09	1935	1/8/09	16.21	SW3051A6010B
Lead			14	0.9	ua/a	1	BJS 1/8/09	1935	1/8/09	16:21	SW3051A6010B
Mercury		0.	04	0.03	ua/a	1	BJS	0900061	1/9/09		SW7470A
Selenium		•	< 2	2	ua/a	1	BJS 1/8/09	1935	1/8/09	16:21	SW3051A6010B
Silver		< ().3	0.3	ug/g	1	BJS 1/8/09	1935	1/8/09	16:21	SW3051A6010B

Lab ID: 15945

Lab Number: 15945-006

Sample ID: TP-11-SB (3-4) DUP

Matrix: Solid Percent Dry: 69.3 %

Results are expressed on a dry weight basis.

Sampled: 12/29/08 10:30		Quant		Instr Dil'n		Prep		Ana	alysis	
Parameter	Result	Limit	Units	Factor	Analyst	Date	Batch	Date	Time	Reference
Arsenic	26	0.8	ug/g	1	BJS	1/8/09	1935	1/8/09	16:26	SW3051A6010B
Barium	34	4	ug/g	1	BJS	1/8/09	1935	1/8/09	16:26	SW3051A6010B
Cadmium	< 0.2	0.2	ug/g	1	BJS	1/8/09	1935	1/8/09	16:26	SW3051A6010B
Chromium	12	4	ug/g	1	BJS	1/8/09	1935	1/8/09	16:26	SW3051A6010B
Lead	16	0.8	ug/g	1	BJS	1/8/09	1935	1/8/09	16:26	SW3051A6010B
Mercury	0.04	0.03	ug/g	1	BJS		0900061	1/9/09		SW7470A
Selenium	< 2	2	ug/g	1	BJS	1/8/09	1935	1/8/09	16:26	SW3051A6010B
Silver	< 0.3	0.3	ug/g	1	BJS	1/8/09	1935	1/8/09	16:26	SW3051A6010B

Lab Number: 15945-010

Sample ID: TP-1-SB (2.5-4.5)

Matrix: Solid Percent Dry: 83.3 %

Results are expressed on a dry weight basis.

Sampled: 12/29/08 12:45		Quant	J	Instr Dil'n		Prep		Ana	alysis	
Parameter	Result	Limit	Units	Factor	Analyst	Date	Batch	Date	Time	Reference
Arsenic	3.5	0.7	ug/g	1	BJS 1	/8/09	1935	1/8/09	16:31	SW3051A6010B
Barium	34	4	ug/g	1	BJS 1	/8/09	1935	1/8/09	16:31	SW3051A6010B
Cadmium	< 0.2	0.2	ug/g	1	BJS 1	/8/09	1935	1/8/09	16:31	SW3051A6010B
Chromium	10	4	ug/g	1	BJS 1	/8/09	1935	1/8/09	16:31	SW3051A6010B
Lead	4.5	0.7	ug/g	1	BJS 1	/8/09	1935	1/8/09	16:31	SW3051A6010B
Mercury	< 0.01	0.01	ug/g	1	BJS		0900061	1/9/09		SW7470A
Selenium	< 2	2	ug/g	1	BJS 1	/8/09	1935	1/8/09	16:31	SW3051A6010B
Silver	< 0.3	0.3	ug/g	1	BJS 1	/8/09	1935	1/8/09	16:31	SW3051A6010B

Lab Number: 15945-011

Sample ID: TP-4A-SB (2-3)

Matrix: Solid Percent Dry: 89.2 %

Sampled: 12/29/08 14:30		Quant	1	Instr Dil'n		Prep		An	alysis	
Parameter	Result	Limit	Units	Factor	Analyst	Date	Batch	Date	Time	Reference
Arsenic	3.5	0.6	ug/g	1	BJS 1	1/8/09	1935	1/8/09	16:36	SW3051A6010B
Barium	42	3	ug/g	1	BJS 1	1/8/09	1935	1/8/09	16:36	SW3051A6010B
Cadmium	0.2	0.2	ug/g	1	BJS ⁻	1/8/09	1935	1/8/09	16:36	SW3051A6010B
Chromium	5	3	ug/g	1	BJS [·]	1/8/09	1935	1/8/09	16:36	SW3051A6010B
Lead	2.4	0.6	ug/g	1	BJS [·]	1/8/09	1935	1/8/09	16:36	SW3051A6010B
Mercury	< 0.01	0.01	ug/g	1	BJS		0900061	1/9/09		SW7470A
Selenium	< 2	2	ug/g	1	BJS '	1/8/09	1935	1/8/09	16:36	SW3051A6010B
Silver	< 0.3	0.3	ug/g	1	BJS [·]	1/8/09	1935	1/8/09	16:36	SW3051A6010B

Quality Control Report

Case Narrative Lab # 15945

Sample Receiving and Chain of Custody Discrepancies

Samples were received in acceptable condition, at 4 degrees C, on ice, and in accordance with sample handling, preservation and integrity guidelines.

Several samples were received on hold and later cancelled. A revised chain of custody is included with the report.

Calibration

No exceptions noted.

Method Blank

No exceptions noted.

Surrogate Recoveries

SVOC: The surrogate for sample 15945-003 was outside the acceptance limits as a result of co-eluting hydrocarbons.

SVOC: The surrogate for sample 15945-010 was unable to be distinguished. The sample was re-extracted and produced similar results. Matrix interference suspected.

Laboratory Control Sample Results

VOC solid: Due to standard availability the solid LCS/LCSD contains only a subset of the target analytes. The results are acceptable. To demonstrate acceptable method performance for all analytes, an aqueous LCS/LCSD is also provided. The results are acceptable.

VOC: The LCSD 1930 did not meet the acceptance criteria for 2,2-dichloropropane. This compounds is known to be problematic in the method. The recovery was acceptable in the LCS.

Matrix Spike/Matrix Spike Duplicate/Duplicate Results

Metals: The percent recovery for mercury in the matrix spike (15945-003) was 40%, outside the acceptance criteria of 75-125%. All other batch QC was within acceptance. Matrix interference is suspected.

SVOC: The percent recovery for the matrix spike was below the acceptance criteria of 40-140% for several PAH compounds. The associated QC was within acceptance. Matrix heterogeneity suspected.

Other

QC: A sample association table is provided for cross reference of sample and lab IDs and associated quality control samples.

Quantitation Limits: Due to the amount of solid used in preparation and the percent dry weight, some quantitation limits are higher than those stated in the QAPP. There appears to be several typos in the table containing the VOC quantitation limits. The reported quantitation limits are below the listed action limits.

Reporting Limits: Dilutions performed during the analysis are noted on the result pages.

No other exceptions noted.

- QC Association Table -

	QC Number	Field ID	Lab iD	
SW3550B8015B				
	1932	TP-7-SB (4.5-6.5)	15945-002	
		TP-16-SS (0-0.5)	15945-003	
		TP-11-SB (3-4)	15945-005	
		TP-11-SB (3-4) DUP	15945-006	
		TP-4A-SB (2-3)	15945-011	
SW3550B8270C				
	1931	TP-7-SB (4.5-6.5)	15945-002	
		TP-16-SS (0-0.5)	15945-003	
		TP-11-SB (3-4)	15945-005	
		TP-11-SB (3-4) DUP	15945-006	
		TP-1-SB (2.5-4.5)	15945-010	
		TP-4A-SB (2-3)	15945-011	
SW5035A8260B				
	1930	TP-7-SB (4.5-6.5)	15945-002	
		TP-11-SB (3-4)	15945-005	
		TP-11-SB (3-4) DUP	15945-006	
		TP-1-SB (2.5-4.5)	15945-010	
		TP-4A-SB (2-3)	15945-011	
		Trip Blank	15945-012	
	SW3550B8015B SW3550B8270C SW5035A8260B	QC Number SW3550B8015B 1932 SW3550B8270C 1931 SW5035A8260B 1930	QC Number Field ID SW3550B8015B 1932 TP-7-SB (4.5-6.5) TP-16-SS (0-0.5) TP-11-SB (3.4) TP-11-SB (3.4) DUP TP-4A-SB (2-3) SW3550B8270C 1931 TP-7-SB (4.5-6.5) TP-16-SS (0-0.5) TP-11-SB (3.4) TP-11-SB (3.4) TP-11-SB (3.4) DUP TP-1-SB (2.5-4.5) TP-4A-SB (2-3) SW5035A8260B 1930 TP-7-SB (4.5-6.5) TP-11-SB (3.4) TP-11-SB (3.4) TP-11-SB (3.4) TP-11-SB (3.4) DUP TP-1-SB (3.4) DUP TP-1-SB (2.5-4.5) TP-4A-SB (2-3) TP-4A-SB (2-3) Trip Blank	QC Number Field ID Lab ID SW3550B8015B 1932 TP-7-SB (4.5-6.5) 15945-002 1932 TP-7-SB (4.5-6.5) 15945-003 TP-16-SS (0-0.5) 15945-003 TP-11-SB (3.4) 15945-006 TP-11-SB (3.4) 15945-011 SW3550B8270C 1931 TP-7-SB (4.5-6.5) 15945-011 SW3550B8270C 1931 TP-7-SB (4.5-6.5) 15945-002 TP-11-SB (3.4) 15945-003 TP-11-SB (3.4) 15945-003 SW5035A8260B TP-1-SB (2.5-4.5) 15945-010 TP-4A-SB (2.3) 15945-011 SW5035A8260B 1930 TP-7-SB (4.5-6.5) 15945-010 TP-4A-SB (2.3) 15945-010 TP-11-SB (3.4) DUP 15945-010 TP-4A-SB (2.3) 15945-010 SW5035A8260B 1930 TP-7-SB (4.5-6.5) 15945-010 TP-1-SB (3.4) 15945-010 SW5035A8260B 1930 TP-7-SB (4.5-6.5) 15945-010 TP-1-SB (2.5-4.5) 15945-010 TP-1-SB (2.5-4.5) 15945-010 TP-1-SB (2.5-4.5) 15945-010 TP-1-SB (2.3)

- QC Report -

Method	QC ID	Parameter	Associated Sample	Re	sult Units	Amt Added	%R	Limit	RPD	RPD Limit
SW5035A8260B	BLK1930	dichlorodifluoromethane		<	2 ug/L					
		chloromethane		<	2 ug/L					
		vinyl chloride		<	2 ug/L					
		bromomethane		<	2 ug/L					
		chloroethane		<	2 ug/L					
		trichlorofluoromethane		<	2 ug/L					
		diethyl ether		<	10 ug/L					
		acetone		<	10 ug/L					
		1,1-dichloroethene		<	1 ug/L					
		methylene chloride		<	5 ug/L					
		carbon disulfide		<	2 ug/L					
		methyl t-butyl ether (MTBE)	<	2 ug/L					
		trans-1,2-dichloroethene		<	2 ug/L					
		isopropyl ether (DIPE)		<	2 ug/L					
		ethyl t-butyl ether (ETBE)		<	2 ug/L					
		1,1-dichloroethane		<	2 ug/L					
		t-butanol (TBA)		<	40 ug/L					
		2-butanone (MEK)		<	10 ug/L					
		2,2-dichloropropane		<	2 ug/L					
		cis-1,2-dichloroethene		<	2 ug/L					
		chloroform		<	2 ug/L					
		bromochloromethane		<	2 ug/L					
		tetrahydrofuran (THF)		<	10 ug/L					
		1,1,1-trichloroethane		<	2 ug/L					
		1,1-dichloropropene		<	2 ug/L					
		t-amyl-methyl ether (TAME)	<	2 ug/L					
		carbon tetrachloride		<	2 ug/L					
		1,2-dichloroethane		<	2 ug/L					
		benzene		<	2 ug/L					
		trichloroethene		<	2 ug/L					
		1,2-dichloropropane		<	2 ug/L					
		bromodichloromethane		<	2 ug/L					
		1,4-dioxane		<	50 ug/L					
		dibromomethane		<	2 ug/L					
		4-methyl-2-pentanone (MIB	K)	<	10 ug/L					
		cis-1,3-dichloropropene		<	2 ug/L					
		toluene		<	2 ug/L					
		trans-1,3-dichloropropene		<	2 ug/L					
		2-hexanone		<	10 ug/L					
		1,1,2-trichloroethane		<	2 ug/L					
		1,3-dichloropropane		<	2 ug/L					
		tetrachloroethene		<	2 ug/L					
		dibromochloromethane		<	2 ug/L					
		1,2-dibromoethane (EDB)		<	2 ug/L					
		chlorobenzene		<	2 ug/L					
		1,1,1,2-tetrachloroethane		<	2 ug/L					
		ethylbenzene		<	2 ug/L					
		m&p-xylenes		<	2 ug/L					
		o-xylene		<	2 ug/L					
		styrene		<	2 ug/L					
		bromoform		<	2 ug/L					

Method	QC ID	Parameter	Associated Sample	Res	sult	Units	Amt Added	%R	Lir	nit	RPD	RPD Limit
SW5035A8260B	BLK1930	isopropylbenzene		<	2 u	g/L						
		1,1,2,2-tetrachloroethane		<	2 u	g/L						
		1,2,3-trichloropropane		<	2 u	g/L						
		n-propylbenzene		<	2 u	g/L						
		bromobenzene		<	2 u	g/L						
		1,3,5-trimethylbenzene		<	2 u	g/L						
		2-chlorotoluene		<	2 u	g/L						
		4-chlorotoluene		<	2 u	g/L						
		tert-butylbenzene		<	2 u	g/L						
		1,2,4-trimethylbenzene		<	2 u	g/L						
		sec-butylbenzene		<	2 u	g/L						
		1,3-dichlorobenzene		<	2 u	g/L						
		4-isopropyltoluene		<	2 u	ıg/L						
		1,4-dichlorobenzene		<	2 u	ıg/L						
		1,2-dichlorobenzene		<	2 u	ig/L						
		n-butylbenzene		<	2 u	ıg/L						
		1,2-dibromo-3-chloropropa	ne	<	2 u	ig/L						
		1,2,4-trichlorobenzene		<	2 u	ıg/L						
		1,3,5-trichlorobenzene		<	2 u	ıg/L						
		hexachlorobutadiene		<	2 u	ıg/L						
		naphthalene		<	5 u	ıg/L						
		1,2,3-trichlorobenzene		<	2 u	ig/L						
		dibromofluoromethane SUF	२		96	%			78	114		
		toluene-D8 SUR			101	%			88	110		
		4-bromofluorobenzene SUF	र		88	%			86	115		

Method	QC ID	Parameter	Associated Sample	Result	Units	Amt Added	%R	L	imit	RPD	RPD Limit
SW5035A8260B	LCS1930	dichlorodifluoromethane		17 u	ig/L	20	83	70	130		
		chloromethane		20 i	ıg/L	20	99	70	130		
		vinyl chloride		19 L	ıg/L	20	96	70	130		
		bromomethane		23 ı	ig/L	20	115	70	130		
		chloroethane		1 9 ι	ig/L	20	94	70	130		
		trichlorofluoromethane		20 ι	ıg/L	20	99	70	130		
		diethyl ether		20 ι	ig/L	20	101	70	130		
		acetone		21 u	ıg/L	20	107	70	130		
		1,1-dichloroethene		19 ι	ig/L	20	97	70	130		
		methylene chloride		20 u	ıg/L	20	99	70	130		
		carbon disulfide		17 u	ig/L	20	85	70	130		
		methyl t-butyl ether (MT8E)		21 u	ig/L	20	106	70	130		
		trans-1,2-dichloroethene		20 u	a/L	20	98	70	130		
		isopropyl ether (DIPE)		21 L	ia/L	20	104	70	130		
		ethyl t-butyl ether (ETBE)		21 เ	0/L	20	103	70	130		
		1.1-dichloroethane		20 u	ισ/L	20	102	70	130		
		t-butanol (TBA)		100 L	ia/L	100	103	70	130		
		2-butanone (MEK)		21 L	19/1 10/1	20	106	70	130		
		2.2-dichloropropane		21 1	.⊛-= ıa/l	20	103	70	130		
		cis-1.2-dichloroethene		20 1	ia/l	20	101	70	130		
		chloroform		20 1	ig/L in/l	20	100	70	130		
		bromochloromethane		20 0	igr⊏ ia/l	20 20	102	70	130		
		tetrahydrofuran (THE)		200	ig/L ia/l	20	102	70	130		
		1.1.1.trichloroothana		210	ig/L ia/l	20	103	70	120		
		1,1,1-dichloropropopo		210	iy/L ia/l	20	105	70	120		
		t amyl methyl other (TAME)		210	lg/L m/l	20	100	70	120		
		earbon totrochlorido		10 .	ig/L all	20	103	70	100		
		1.2 dichloroothana		21 -	iy/∟ a/l	20	90 102	70	120		
				210	'y/∟ a/I	20	100	70	100		
		trichlereethene		210	у/L ~//	20	103	70	130		
				20 u	g/L	20	101	70	130		
		r,z-dichloropiopane		20 u 40 u	g/L	20	100	70	130		
				19 0	g/L	20	94	70	130		
		1,4-dioxane		< 50 0	g/L	40	114				
		dipromometnane	0	20 u	g/L	20	100	70	130		
		4-methyl-2-pentanone (MIBI	K)	19 u	g/L	20	96	70	130		
		cis-1,3-dichloropropene		18 u	g/L	20	91	70	130		
		toluene		20 u	g/L	20	101	70	130		
		trans-1,3-dichloropropene		17 u	g/L	20	85	70	130		
		2-hexanone		19 u	g/L	20	95	70	130		
		1,1,2-trichloroethane		19 u	g/L	20	97	70	130		
		1,3-dichloropropane		21 u	g/L	20	104	70	130		
		tetrachloroethene		21 u	g/L	20	107	70	130		
		dibromochloromethane		18 u	g/L	20	88	70	130		
		1,2-dibromoethane (EDB)		19 u	g/L	20	94	70	130		
		chlorobenzene		20 u	g/L	20	102	70	130		
		1,1,1,2-tetrachloroethane		18 u	g/L	20	92	70	130		
		ethylbenzene		20 u	g/L	20	102	70	130		
		m&p-xylenes		40 u	g/L	40	101	70	130		
		o-xylene		20 u	g/L	20	102	70	130		
		styrene		20 u	g/L	20	102	70	130		
		bromoform		17 u	g/L	20	86	70	130		
		isopropylbenzene		20 u	g/L	20	102	70	130		
		1.1.2.2-tetrachloroethane		22 u	a/L	20	112	70	130		

Method	QC ID	Parameter	Associated Sample	Result Units	Amt Added	%R	Li	imit	RPD	RPD Limit
SW5035A826	0B LCS1930	1,2,3-trichloropropane		23 ug/L	20	113	70	130		
		n-propylbenzene		24 ug/L	20	120	70	130		
		bromobenzene		23 ug/L	20	115	70	130		
		1,3,5-trimethylbenzene		24 ug/L	20	119	70	130		
		2-chlorotoluene		22 ug/L	20	112	70	130		
		4-chlorotoluene		24 ug/L	20	121	70	130		
		tert-butylbenzene		23 ug/L	20	113	70	130		
		1,2,4-trimethylbenzene		23 ug/L	20	117	70	130		
		sec-butylbenzene		22 ug/L	20	111	70	130		
		1,3-dichlorobenzene		23 ug/L	20	115	70	130		
		4-isopropyltoluene		24 ug/L	20	119	70	130		
		1,4-dichlorobenzene		22 ug/L	20	110	70	130		
		1,2-dichlorobenzene		23 ug/L	20	117	70	130		
		n-butylbenzene		24 ug/L	20	119	70	130		
		1,2-dibromo-3-chloropropan	e	21 ug/L	20	106	70	130		
		1,2,4-trichlorobenzene		21 ug/L	20	106	70	130		
		1,3,5-trichlorobenzene		22 ug/L	20	111	70	130		
		hexachlorobutadiene		24 ug/L	20	119	70	130		
		naphthalene		20 ug/L	20	100	70	130		
		1,2,3-trichlorobenzene		22 ug/L	20	109	70	130		
		dibromofluoromethane SUR	ł	97 %			78	114		
		toluene-D8 SUR		99 %			88	110		
		4-bromofluorobenzene SUR	ł	98 %			86	115		

Method	QC ID	Parameter	Associated Sample	Result Units	Amt Added	%R	Li	mit	RPD	RPD Limit
SW5035A8260B	LCSD1930	dichlorodifluoromethane		16 ug/L	20	78	70	130	6	20
		chloromethane		17 ug/L	20	87	70	130	13	20
		vinyl chloride		19 ug/L	20	94	70	130	2	20
		bromomethane		22 ug/L	20	112	70	130	3	20
		chloroethane		18 ug/L	20	88	70	130	6	20
		trichlorofluoromethane		19 ug/L	20	95	70	130	5	20
		diethyl ether		21 ug/L	20	103	70	130	1	20
		acetone		23 ug/L	20	116	70	130	8	20
		1,1-dichloroethene		17 ug/L	20	85	70	130	13	20
		methylene chloride		20 ug/L	20	99	70	130	0	20
		carbon disulfide		16 ug/L	20	82	70	130	3	20
		methyl t-butyl ether (MTBE)	22 ug/L	20	108	70	130	2	20
		trans-1,2-dichloroethene		19 ug/L	20	96	70	130	2	20
		isopropyl ether (DIPE)		21 ug/L	20	106	70	130	2	20
		ethyl t-butyl ether (ETBE)		21 ug/L	20	106	70	130	2	20
		1,1-dichloroethane		20 ug/L	20	99	70	130	3	20
		t-butanol (TBA)		110 ug/L	100	107	70	130	4	20
		2-butanone (MEK)		21 ug/L	20	106	70	130	1	20
		2,2-dichloropropane		13 ug/L	20	63	* 70	130	47	* 20
		cis-1,2-dichloroethene		20 ug/L	20	98	70	130	3	20
		chloroform		19 ug/L	20	96	70	130	3	20
		bromochloromethane		20 ug/L	20	101	70	130	2	20
		tetrahydrofuran (THF)		21 ug/L	20	106	70	130	2	20
		1,1,1-trichloroethane		20 ug/L	20	98	70	130	6	20
		1,1-dichloropropene		20 ug/L	20	99	70	130	6	20
		t-amyl-methyl ether (TAME	:)	21 ug/L	20	103	70	130	0	20
		carbon tetrachloride		18 ug/L	20	90	70	130	5	20
		1,2-dichloroethane		20 ug/L	20	99	70	130	4	20
		benzene		20 ug/L	20	99	70	130	3	20
		trichloroethene		19 ug/L	20	96	70	130	5	20
		1,2-dichloropropane		20 ug/L	20	102	70	130	1	20
		bromodichloromethane		19 ug/L	20	95	70	130	0	20
		1,4-dioxane		< 50 ug/L	40	106			7	20
		dibromomethane		20 ug/L	20	99	70	130	1	20
		4-methyl-2-pentanone (MI	3K)	19 ug/L	20	94	70	130	2	20
		cis-1,3-dichloropropene		17 ug/L	20	87	70	130	5	20
		toluene		20 ug/L	20	98	70	130	3	20
		trans-1,3-dichloropropene		16 ug/L	20	80	70	130	7	20
		2-hexanone		20 ug/L	20	98	70	130	3	20
		1,1,2-trichloroethane		20 ug/L	20	99	70	130	2	20
		1,3-dichloropropane		21 ug/L	20	103	70	130	· 1	20
		tetrachloroethene		21 ug/L	20	105	70	130	2	20
		dibromochloromethane		18 ug/L	20	91	70	130	4	20
		1,2-dibromoethane (EDB)		19 ug/L	20	95	70	130	1	20
		chlorobenzene		21 ug/L	20	105	70	130	3	20
		1,1,1,2-tetrachloroethane		19 ug/L	20	95	70	130	3	20
		ethylbenzene		21 ug/L	20	104	70	130	2	20
		m&p-xylenes		41 ug/L	40	102	70	130	1	20
		o-xylene		21 ug/L	20	103	70	130	1	20
		styrene		20 ug/L	20	102	70	130	1	20
		bromoform		17 ug/L	20	87	70	130	1	20
		isopropylbenzene		20 ug/L	20	99	70	130	2	20
		1,1,2,2-tetrachloroethane		22 ug/L	20	109	70	130	2	20
							-			

Ξ

Vethod	QC ID	Parameter	Associated Sample	Result Units	Amt Added	%R	Li	mit	RPD	RPD Limit
SW5035A826	60B LCSD1930	1,2,3-trichloropropane		22 ug/L	20	112	70	130	1	20
		n-propylbenzene		22 ug/L	20	109	70	130	9	20
		bromobenzene		22 ug/L	20	109	70	130	5	20
		1,3,5-trimethylbenzene		21 ug/L	20	105	70	130	13	20
		2-chlorotoluene		21 ug/L	20	103	70	130	8	20
		4-chlorotoluene		22 ug/L	20	109	70	130	11	20
		tert-butylbenzene		22 ug/L	20	109	70	130	4	20
		1,2,4-trimethylbenzene		21 ug/L	20	106	70	130	10	20
		sec-butylbenzene		20 ug/L	20	102	70	130	9	20
		1,3-dichlorobenzene		21 ug/L	20	105	70	130	9	20
		4-isopropyltoluene		22 ug/L	20	109	70	130	8	20
		1,4-dichlorobenzene		20 ug/L	20	102	70	130	7	20
		1,2-dichlorobenzene		22 ug/L	20	109	70	130	8	20
		n-butylbenzene		21 ug/L	20	105	70	130	12	20
		1,2-dibromo-3-chloropropan	e	22 ug/L	20	110	70	130	4	20
		1,2,4-trichlorobenzene		19 ug/L	20	93	70	130	13	20
		1,3,5-trichlorobenzene		19 ug/L	20	95	70	130	16	20
		hexachlorobutadiene		20 ug/L	20	99	70	130	18	20
		naphthalene		19 ug/L	20	95	70	130	5	20
		1,2,3-trichlorobenzene		20 ug/L	20	100	70	130	8	20
		dibromofluoromethane SUR		101 %			78	114		
		toluene-D8 SUR		100 %			88	110		
		4-bromofluorobenzene SUR		103 %			86	115		

Method	QC ID	Parameter	Associated Sample	Rest	ult Units	Amt Added	%R	Limit	RPD	RPD Limit
SW5035A8260B	MB1930	dichlorodifluoromethane	MB326	< 0).1 ug/g					
		chloromethane	MB326	< 0).1 ug/g					
		vinyl chloride	MB326	< 0).1 ug/g					
		bromomethane	MB326	< 0).2 ug/g					
		chloroethane	MB326	< 0).1 ug/g					
		trichlorofluoromethane	MB326	< 0).1 ug/g					
		diethyl ether	MB326	< 0).5 ug/g					
		acetone	MB326	< 2	2.5 ug/g					
		1,1-dichloroethene	MB326	< 0).1 ug/g					
		methylene chloride	MB326	< 0).2 ug/g					
		carbon disulfide	MB326	< 0).1 ug/g					
		methyl t-butyl ether (MTBE)	MB326	< 0).1 ug/g					
		trans-1,2-dichloroethene	MB326	< 0).1 ug/g					
		isopropyl ether (DIPE)	MB326	< 0	l.1 ug/g					
		ethyl t-butyl ether (ETBE)	MB326	< 0	l.1 ug/g					
		1,1-dichloroethane	MB326	< 0	l.1 ug/g					
		t-butanol (TBA)	MB326	< 2	.5 ug/g					
		2-butanone (MEK)	MB326	< 0	.5 ug/g					
		2,2-dichloropropane	MB326	< 0	.1 ug/g					
		cis-1,2-dichloroethene	MB326	< 0	.1 ug/g					
		chloroform	MB326	< 0).1 ug/g					
		bromochloromethane	MB326	< 0	.1 ug/g					
		tetrahydrofuran (THF)	MB326	< 0	.5 ug/g					
		1,1,1-trichloroethane	MB326	< 0	.1 ug/g					
		1,1-dichloropropene	MB326	< 0	.1 ug/g					
		t-amyl-methyl ether (TAME)	MB326	< 0	.1 ug/g					
		carbon tetrachtoride	MB326	< 0	.1 ug/g					
		1,2-dichloroethane	MB326	< 0	.1 ug/g					
		benzene	MB326	< 0	.1 ug/g					
		trichloroethene	MB326	< 0	.1 ug/g					
		1,2-dichloropropane	MB326	< 0	.1 ug/g					
		bromodichloromethane	MB326	< 0	.1 ug/g					
		1,4-dioxane	MB326	< 2	.5 ug/g					
		dibromometnane	MB326	< 0	.1 ug/g					
		4-metnyi-z-pentanone (MIB	K) MB326	< 0	.5 ug/g					
		cis-1,3-aicnioropropene	MB326	< 0	.1 ug/g					
			MB326	< 0	.1 ug/g					
		trans-1,3-oicnioropropene	MB320	< 0	.iug/g					
		2-nexanone	MB326	< 0	.5 ug/g					
		1, 1,2-urchioroeunane	MB320	< 0	.1 ug/g 4 us/s					
		1,5-dichlorophopane	MB320	< 0	.1 ug/g					
		dibramachlaramathana	MDJ20	< 0	.iug/g 1.ug/a					
		1.2 dibromoethere (EDP)	MDJZO	< 0 < 0	.iug/g 1.ug/a					
			MD320		.iug/g 1ug/g					
		1 1 1 2 tetrachloroethane	MB320	~ U.	. rug/y 1 uala					
		ethylhenzene	MDJZU	~ 0	. ug/y 1 ug/c					
		m&n_xvlenes	MR398	~ U. ^	a ugry 2 unto			0		
		n-xvlene	MB326	ں ح	. ב ugry 1 ug/g			2		
		stvrene	MB326	< 0	1 ug/g 1 un/n					
		bromoform	MB326	< 0	1 ug/g 1 ug/g					
		isopropylbenzene	MB326	< 0	. чу/у 1 на/а					
		1.1.2.2-tetrachloroethane	MB326	< 0.	. чу/у 1 ца/а					
			WID020	ς U.	a ug/y					

=

Method	QC ID	Parameter	Associated Sample	Result Units	Amt Added	%R	Limit	RPD	RPD Limit
SW5035A826	30B MB1930	1,2,3-trichloropropane	MB326	< 0.1 ug/g					
		n-propylbenzene	MB326	< 0.1 ug/g					
		bromobenzene	MB326	< 0.1 ug/g					
		1,3,5-trimethylbenzene	MB326	< 0.1 ug/g					
		2-chlorotoluene	MB326	< 0.1 ug/g					
		4-chlorotoluene	MB326	< 0.1 ug/g					
		tert-butylbenzene	MB326	< 0.1 ug/g					
		1,2,4-trimethylbenzene	MB326	< 0.1 ug/g					
		sec-butylbenzene	MB326	< 0.1 ug/g					
		1,3-dichlorobenzene	MB326	< 0.1 ug/g					
		4-isopropyltoluene	MB326	< 0.1 ug/g					
		1,4-dichlorobenzene	MB326	< 0.1 ug/g					
		1,2-dichlorobenzene	MB326	< 0.1 ug/g					
		n-butylbenzene	MB326	< 0.1 ug/g					
		1,2-dibromo-3-chloropropan	e MB326	< 0.1 ug/g					
		1,2,4-trichlorobenzene	MB326	< 0.1 ug/g					
		1,3,5-trichlorobenzene	MB326	< 0.1 ug/g					
		hexachlorobutadiene	MB326	< 0.1 ug/g					
		naphthalene	MB326	< 0.2 ug/g					
		1,2,3-trichlorobenzene	MB326	< 0.1 ug/g					
		dibromofluoromethane SUR	MB326	102 %			78 114		
		toluene-D8 SUR	MB326	102 %			88 110		
		4-bromofluorobenzene SUR	MB326	93 %			86 115		
		a,a,a-trifluorotoluene SUR	MB326	101 %			70 130		

Method	QC ID	Parameter	Associated Sample	Re	sult	Units	Amt Added	%R	Li	mit	RPD	RPD Limit
SW5035A8260B	MLCS1930	dichlorodifluoromethane	MLCS326	<	0.1 (ug/g						
		chloromethane	MLCS326	<	0.1 ו	ug/g						
		vinyl chloride	MLCS326	<	0.1 (ug/g						
		bromomethane	MLCS326	<	0.2 (ug/g						
		chloroethane	MLCS326	<	0.1 (ug/g						
		trichlorofluoromethane	MLCS326	<	0.1 (ug/g						
		diethyl ether	MLCS326	<	0.5 :	ug/g						
		acetone	MLCS326	<	2.5	ug/g						
		1,1-dichloroethene	MLCS326		0.9	ug/g	1	93	70	130		
		methylene chloride	MLCS326	<	0.2	ug/g						
		carbon disulfide	MLCS326	<	0.1	ug/g						
		methyl t-butyl ether (MTBE)	MLCS326	<	0.1	ug/g						
		trans-1,2-dichloroethene	MLCS326	<	0,1	ug/g						
		isopropyl ether (DIPE)	MLCS326	<	0.1	ug/g						
		ethyl t-butyl ether (ETBE)	MLCS326	<	0.1	ug/g						
		1,1-dichloroethane	MLCS326	<	0.1	ug/g						
		t-butanol (TBA)	MLCS326	<	2.5	ug/g						
		2-butanone (MEK)	MLCS326	<	0.5	ug/g						
		2,2-dichloropropane	MLCS326	<	0.1	ug/g						
		cis-1,2-dichloroethene	MLCS326	<	0.1	ug/g						
		chloroform	MLCS326	<	0.1	ug/g						
		bromochloromethane	MLCS326	<	0.1	ug/g						
		tetrahydrofuran (THF)	MLCS326	<	0.5	ug/g						
		1,1,1-trichloroethane	MLCS326	<	0.1	ug/g						
		1,1-dichloropropene	MLCS326	<	0.1	ug/g						
		t-amyl-methyl ether (TAME)	MLCS326	<	0.1	ug/g						
		carbon tetrachloride	MLCS326	<	0.1	ug/g						
		1,2-dichloroethane	MLCS326	<	0.1	ug/g		400	70	400		
		benzene	MLCS326		1.0	ug/g	1	100	70	130		
		trichloroethene	MLCS326		0.9	ug/g	1	90	70	130		
		1,2-dichloropropane	MLCS326	<	0.1	ug/g						
		bromodichloromethane	MLCS326	<	0.1	ug/g						
		1,4-qioxane	MLCS326	<	2.5	ug/g						
		olpromometnane		~	0.1	ug/g ug/g						
		4-metnyi-2-pentanone (IVIIB)	KJ MLCS320	~	0.0	ug/g						
		cis-1,3-aicnioroproperie	MLCC3320	`	U.I 4.0	ug/g uala	4	00	70	120		
		trana 4.2 diablarapropaga	MLCS320	/	1.0	ug/g ug/a	I	99	10	150		
		ans-r,o-uchioropropene	MLC3320	2	0.1	ug/g uala						
		2-nexanone	MLCOJ20		0.0	ug/g ug/a						
		1,1,2-thenioroethane	MLC3320)	0.1	ugig ugia						
		totrachloroothono	MLC0020	Ì	0.1	ugrg uala						
		dibromochloromothana	MLC3320	2	0.1	ugig uala						
		1.2 dibromoethane (EDB)	MLCS326	Ż	0.1	nala						
		chlorohonzono	MLCS326		10	ugig uala	1	102	70	130		
		1 1 1 2-tetrachloroethane	ML00020	<	0.1	uala nala	I	104	10	100		
		efhylhenzene	MI CS326	~	0.1	าน/น เม						
		m&p-xvienes	MI CS326	•	01	na\u ~~.a			70	130		
		o-xvlene	MLCS326	<	0.1	ua/a						
		styrene	MI CS326	<	0.1	∽ə ə uola						
		bromoform	MLCS326	<	0.1	∽ərə uola						
		isopropvlbenzene	MLCS326	<	0.1	ua/a						
		1,1,2,2-tetrachloroethane	MLCS326	<	0.1	ug/a						
			· -			0.0						

Method	QC ID	Parameter	Associated Sample	Result Units	Amt Added	%R L	.imit	RPD	RPD Limit
SW5035A8260E	3 MLCS1930	1,2,3-trichloropropane	MLCS326	< 0.1 ug/g					
		n-propylbenzene	MLCS326	< 0.1 ug/g					
		bromobenzene	MLCS326	< 0.1 ug/g					
		1,3,5-trimethylbenzene	MLCS326	< 0.1 ug/g					
		2-chlorotoluene	MLCS326	< 0.1 ug/g					
		4-chlorotoluene	MLCS326	< 0.1 ug/g					
		tert-butylbenzene	MLCS326	< 0.1 ug/g					
		1,2,4-trimethylbenzene	MLCS326	< 0.1 ug/g					
		sec-butylbenzene	MLCS326	< 0.1 ug/g					
		1,3-dichlorobenzene	MLCS326	< 0.1 ug/g					
		4-isopropyltoluene	MLCS326	< 0.1 ug/g					
		1,4-dichlorobenzene	MLCS326	< 0.1 ug/g					
		1,2-dichlorobenzene	MLCS326	< 0.1 ug/g					
		n-butylbenzene	MLCS326	< 0.1 ug/g					
		1,2-dibromo-3-chloropropan	e MLCS326	< 0.1 ug/g					
		1,2,4-trichlorobenzene	MLCS326	< 0.1 ug/g					
		1,3,5-trichlorobenzene	MLCS326	< 0.1 ug/g					
		hexachlorobutadiene	MLCS326	< 0.1 ug/g					
		naphthalene	MLCS326	< 0.2 ug/g					
		1,2,3-trichlorobenzene	MLCS326	< 0.1 ug/g					
		dibromofluoromethane SUR	MLCS326	101 %		78	114		
		toluene-D8 SUR	MLCS326	100 %		88	110		
		4-bromofluorobenzene SUR	MLCS326	93 %		86	115		
		a,a,a-trifluorotoluene SUR	MLCS326	93 %		70	130		

X

Method	QC ID	Parameter	Associated Sample	Re	sult	Units	Amt Added	%R	L	imit	RPD	RPD Limit
SW5035A8260B	MLCSD1930	dichlorodifluoromethane	MLCSD326	<	0.1 ı	ıg/g						
		chloromethane	MLCSD326	<	0.1 ι	ıg/g						
		vinyl chloride	MLCSD326	<	0.1 ı	ıg/g						
		bromomethane	MLCSD326	<	0.2 ι	ıg/g						
		chloroethane	MLCSD326	<	0.1 u	ıg/g						
		trichlorofluoromethane	MLCSD326	<	0.1 ı	ıg/g						
		diethyl ether	MLCSD326	<	0.5 I	ıg/g						
		acetone	MLCSD326	<	2.5 ı	ıg/g						
		1,1-dichloroethene	MLCSD326		0.9 ı	ıg/g	1	93	70	130	0	30
		methylene chloride	MLCSD326	<	0.2 ı	ıg/g						
		carbon disulfide	MLCSD326	<	0.1 ı	ıg/g						
		methyl t-butyl ether (MTBE)	MLCSD326	<	0.1 ı	ıg/g						
		trans-1,2-dichloroethene	MLCSD326	<	0.1 ı	ıg/g						
		isopropyl ether (DIPE)	MLCSD326	<	0.1 ı	ıg/g						
		ethyl t-butyl ether (ETBE)	MLCSD326	<	0.1 u	ıg/g						
		1,1-dichloroethane	MLCSD326	<	0.1 ı	ıg/g						
		t-butanol (TBA)	MLCSD326	<	2.5 เ	ıg/g						
		2-butanone (MEK)	MLCSD326	<	0.5 ı	ıg/g						
		2,2-dichloropropane	MLCSD326	<	0.1 ı	ıg/g						
		cis-1,2-dichloroethene	MLCSD326	<	0.1 ı	ıg/g						
		chloroform	MLCSD326	<	0,1 (ıĝ/g						
		bromochloromethane	MLCSD326	<	0.1 (ıg/g						
		tetrahydrofuran (THF)	MLCSD326	<	0.5 (ıg/g						
		1,1,1-trichloroethane	MLCSD326	<	0.1 1	ıg/g						
		1,1-dichloropropene	MLCSD326	<	0.1 ו	ıg/g						
		t-amyl-methyl ether (TAME)	MLCSD326	<	0.1 ו	ıg/g						
		carbon tetrachloride	MLCSD326	<	0.1 (ıg/g						
		1,2-dichloroethane	MLCSD326	<	0.1 (ıg/g						
		benzene	MLCSD326		1.0 (ıg/g	1	100	70	130	0	30
		trichloroethene	MLCSD326		0.9 (ıg/g	1	90	70	130	0	30
		1,2-dichloropropane	MLCSD326	<	0.1 (ıg/g						
		bromodichloromethane	MLCSD326	<	0.1 (ıg/g						
		1,4-dioxane	MLCSD326	<	2.5 (ıg/g						
		dibromomethane	MLCSD326	<	0.1 (ıg/g						
		4-methyl-2-pentanone (MIB)	<) MLCSD326	<	0.5 (ıg/g						
		cis-1,3-dichloropropene	MLCSD326	<	0.1 (ıg/g						
		toluene	MLCSD326		1.0 (ıg/g	1	97	70	130	1	30
		trans-1,3-dichloropropene	MLCSD326	<	0.1 (ıg/g						
		2-hexanone	MLCSD326	<	0.5 (ıg/g						
		1,1,2-trichloroethane	MLCSD326	<	0.1 (ıg/g						
		1,3-dichloropropane	MLCSD326	<	0.1 (ıg/g						
		tetrachloroethene	MLCSD326	<	0.1 (ıg/g						
		dibromochloromethane	MLCSD326	<	0.1 (ıg/g						
		1,2-dibromoethane (EDB)	MLCSD326	<	0.1 (ıg/g						
		chlorobenzene	MLCSD326		1.0 (ug/g	1	100	70	130	2	30
		1,1,1,2-tetrachloroethane	MLCSD326	<	0.1	ıg/g						
		ethylbenzene	MLCSD326	<	0.1	ıg/g						
		m&p-xylenes	MLCSD326		0.1	ıg/g			70	130		
		o-xylene	MLCSD326	<	0.1	ıg/g						
		styrene	MLCSD326	<	0.1	ıg/g						
		bromoform	MLCSD326	<	0.1	ıg/g						
		to open and the open open			• •	ala						
		isopropyidenzene	MLCSD326	<	0.1	ug/g						

lethod	QC ID	Parameter	Associated Sample	Res	sult Units	Amt Added	%R	Lir	nit	RPD	RPD Limit
SW5035A82	60B MLCSD1930	1,2,3-trichloropropane	MLCSD326	<	0.1 ug/g						
		n-propylbenzene	MLCSD326	<	0.1 ug/g						
		bromobenzene	MLCSD326	<	0.1 ug/g						
		1,3,5-trimethylbenzene	MLCSD326	<	0.1 ug/g						
		2-chlorotoluene	MLCSD326	<	0.1 ug/g						
		4-chlorotoluene	MLCSD326	<	0.1 ug/g						
		tert-butylbenzene	MLCSD326	<	0.1 ug/g						
		1,2,4-trimethylbenzene	MLCSD326	<	0.1 ug/g						
		sec-butylbenzene	MLCSD326	<	0.1 ug/g						
		1,3-dichlorobenzene	MLCSD326	<	0.1 ug/g						
		4-isopropyltoluene	MLCSD326	<	0.1 ug/g						
		1,4-dichlorobenzene	MLCSD326	<	0.1 ug/g						
		1,2-dichlorobenzene	MLCSD326	<	0.1 ug/g						
		n-butylbenzene	MLCSD326	<	0.1 ug/g						
		1,2-dibromo-3-chloropropan	e MLCSD326	<	0.1 ug/g						
		1,2,4-trichlorobenzene	MLCSD326	<	0.1 ug/g						
		1,3,5-trichlorobenzene	MLCSD326	<	0.1 ug/g						
		hexachlorobutadiene	MLCSD326	<	0.1 ug/g						
		naphthalene	MLCSD326	<	0.2 ug/g						
		1,2,3-trichlorobenzene	MLCSD326	<	0.1 ug/g						
		dibromofluoromethane SUR	MLCSD326		100 %			78	114		
		toluene-D8 SUR	MLCSD326		99 %			88	110		
		4-bromofluorobenzene SUR	MLCSD326		92 %			86	115		
		a,a,a-trifluorotoluene SUR	MLCSD326		97 %			70	130		

Method	QC ID	Parameter	Associated Sample	Res	ult Units	Amt Added	%R	Li	mit	RPD	RPD Limit
SW3550B8015B	BLK1932	Diesel Range Organics (DR	0)	< 2	200 ug/g						
		2-fluorobiphenyl SUR			81 %			40	140		
		o-terphenyl SUR			90 %			40	140		
	LCS1932	Diesel Range Organics (DR	O)	2′	100 ug/g	2500	83	40	140		
		2-fluorobiphenyl SUR			74 %			40	140		
		o-terphenyl SUR			95 %			40	140		
SW3550B8270C	BLK1931	naphthalene		<	0.5 ug/g						
		2-methylnaphthalene		<	0.5 ug/g						
		acenaphthylene		<	0.5 ug/g						
		acenaphthene		<	0.5 ug/g						
		dibenzofuran		<	0.5 ug/g						
		fluorene		<	0.5 ug/g						
		phenanthrene		<	0.5 ug/g						
		anthracene		<	0.5 ug/g						
		fluoranthene		<	0.5 ug/g						
		pyrene		<	0.5 ug/g						
		benzo(a)anthracene		<	0.5 ug/g						
		chrysene		<	0.5 ug/g						
		benzo(b)fluoranthene		<	0.5 ug/g						
		benzo(k)fluoranthene		<	0.5 ug/g						
		benzo(a)pyrene		<	0.2 ug/g						
		indeno(1,2,3-cd)pyrene		<	0.5 ug/g						
		dibenzo(a,h)anthracene		<	0.5 ug/g						
		benzo(g,h,i)perylene		<	0.5 ug/g						
		2-fluorobiphenyl SUR			73 %			43	116		
		o-terphenyl SUR			71 %			33	141		
	LCS1931	naphthalene			4.7 ug/g	4	118	40	140		
		2-methylnaphthalene			4.4 ug/g	4	111	40	140		
		acenaphthylene			4.7 ug/g	4	118	40	140		
		acenaphthene			4.8 ug/g	4	121	40	140		
		dibenzofuran		<	0.5 ug/g						
		fluorene			4.5 ug/g	4	113	40	140		
		phenanthrene			4.8 ug/g	4	119	40	140		
		anthracene			4.7 ug/g	4	117	40	140		
		fluoranthene			4.8 ug/g	4	120	40	140		
		pyrene			4.4 ug/g	4	110	40	140		
		benzo(a)anthracene			4.6 ug/g	4	114	40	140		
		chrysene			4.5 ug/g	4	113	40	140		
		benzo(b)fluoranthene			4.5 ug/g	4	113	40	140		
		benzo(k)fluoranthene			3.7 ug/g	4	94 00	40	140		
		penzo(a)pyrene			3.9 ug/g	4	99	40	140		
		indeno(1,2,3-cd)pyrene			ა./ug/g	4	93	40	140		
		dipenzo(a,h)anthracene			3.6 ug/g	4	91 100	40	140		
		penzo(g,n,i)perviene			4.1 Ug/g	4	102	40	140		
		Z-iluoropipnenyl SUR			81 %			43	110		
		o-terpnenyl SUK			12 %			33	141		

Lab Number 15945	METALS	QC REPORT
Batch QC Results		Solid

Prep Blank

	Result	Reporting Limit
Sample ID #	(ug/g)	(ug/g)
PBs010809	< 0.35	0.35
PBs010809	< 0.5	0.5
PBs010809	< 3	3
PBs010809	< 0.3	0.3
PBs010809	< 3	3
PBs010809	< 0.5	0.5
PBs010809	< 3	3
PBs010909	< 0.03	0.03
	Sample ID # PBs010809 PBs010809 PBs010809 PBs010809 PBs010809 PBs010809 PBs010809 PBs010809 PBs010909	ResultSample ID #(ug/g)PBs010809< 0.35

Laboratory Control Sample

Laboratory Conti	rol Sample			Vendor
		Result	True	Solid Control
Analyte	Sample ID #	(ug/g)	Value (ug/g)	Limits (ug/g)
Silver	LCSss010809	29	38.5	25.1 - 51.9
Arsenic	LCSss010809	380	400	292 - 508
Barium	LCSss010809	31	24.8	0.00 - 51.3
Cadmium	LCSss010809	15	15.4	8.71 - 22.0
Chromium	LCSss010809	19	13.6	2.45 - 24.7
Lead	LCSss010809	4800	5111	3753 - 6469
Selenium	LCSss010809	5.8	6.57	0.00 - 18.4
Mercury	LCSs010909	0.0092	0.0100	N/A

Laboratory Control Sample - Duplicate

Laboratory Con	trol Sample - Duplicate	e		Vendor
		Result	True	Solid Control
Analyte	Sample ID #	(ug/g)	Value (ug/g)	Limits (ug/g)
Silver	LCSDss010809	31	38.5	25.1 - 51.9
Arsenic	LCSDss010809	380	400	292 - 508
Barium	LCSDss010809	32	24.8	0.00 - 51.3
Cadmium	LCSDss010809	15	15.4	8.71 - 22.0
Chromium	LCSDss010809	20	13.6	2.45 - 24.7
Lead	LCSDss010809	5000	5111	3753 - 6469
Selenium	LCSDss010809	5. 9	6.57	0.00 - 18.4
Mercury	LCSDs010909	0.0099	0.0100	N/A

Relative Percent Difference

	LCS Recovery	RPD							
Analyte									
Silver	29	31	7						
Arsenic	380	380	0						
Barium	31	32	3						
Cadmium	15	15	0						
Chromium	19	20	5						
Lead	4800	5000	4						
Selenium	5.8	5.9	2						
Mercury	0.0092	0.0099	6						

						,	ani inany of mility into t				1	مح بن ہو و		<u> </u>	1 8 ~	-geo part in	~~~	,	~~	mg gmg.				i	-AG	I).	U									
TTR	esourc	еL	Laboi	ratorie	es,	LL	دامه افزنه					nair ND A	v- ひ いん	LY	us SIS	RE	, r QL	ne(IES	וטר T	T									(indexes)							
124	Hentage A	venu	ie • Poi	rtsmouth,	NHO	380	1															·														
A & A Pho	ne: 603-43	5-20(01 • Fa	1x: 603-43	0-210)Q										Ye. I.	J.T	7.1	A		=[1]	Π₹	S å													
Company Name:	1 ¹⁶ 10 11	سى ئى	~		Pro	ojact. I	:Name مرتع	NH	ANG AN	larda. T			700-000	10			10000							*												
LOUIS DERGER	GROUP	<u>/ c</u>	264		-Pro	oject (سکا ^{سی} د اوروس ۱۹۴	ి.C.19 లాలా⊐	HULLIN A T	F				dadu	a an 1 A Jacobs									Floor	8											
Company Address: 1001 SLA STR	557, S 1111	٣ź.	203	7 L.BG			د.» ۱	ے ہے ہے۔ دوسیر	- :07.2.VI					HH					-				1		Pest											
MAY 4 HES	rtk, Nt	<u>+</u>	0330	<u>21.)</u>	-Pro	aject i	Locatio	n: (NF	i)ma me vt	Other	ME			0	-	cci			L Mat	ł			40	理由	100	icities										
Dousio al	ke (BV).	And C	< PS	:	Pro	otoco	l: Fill	GRA	SDWA N	DES	1993			Sam	FW		(title)		1 0		W		30%			計畫										
Phone #:	Fax	#:		di aartu taan melekin kenederta and	-Re	portir		APP	GW-1 S-	1	١¥	有日	>	HHH		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ő		61819 1	w.4947-471	ā	und name name	C C		P-SM	DI LU										
603 623-3	600 (ç03	624-	9463	Lin	nlis:	El	"A DW	Other			ABE. I				Nessi Nessi	1	Apinj	lisni k	-	Ц		\$* []													
Invoice To: C -7 A	Zun U	Le ø :	15- R	\sim	ΠQu	iote #	ł		an a		OHH (NEQ.	8 []))chie 38.6 S	ndiali	J Alla	Pell		NY.	01	W	Morad	s S	inter i			5							
NG C P - J MA	ncite Str	. (L.	<u>()</u> (505	Po	*			• • • • • • • • • • • • • • • • • • •		1928	A BIB	E.G.S.	10	NGWD	31 Fg Beral C	80	口口	E SUR	10		Picat		30	ELP/	l Ö			otik (
Lah	22	N	latrix	Preser	vatic	on N	letho	d	Sampling	ł			3 ž	0.001	182		le		ц <u>з</u>	list biats-l	00	2 4	赏		3 0	101			ğ							
Sample Fiel	d N					ĺ				H	595 195	24 C	24.2	P. D.	E	69			Held.	N Devi	福	sphore	다. 용	ΞĮ	Molai	13			8							
ID ID	ONT	TEH	9 H	- 6	20	Ξ	OH	(Ale	<u> </u>	MPLE	Xoc F	VOC 6	NOC -	E	8270	0FC 0FC	E	S	BCRA	Disso		1-Phg	Cyan	Allrah	TOLP 10	(xorat			9							
Lab Use Only)	0 14a	M	<u>S</u> E	P NH	Ť	Nev	≥ o	ŝ	S F	SA	15		1 4	K.	¥-[X I		<u> </u>				3 0	- 25			8							
		120		2 <u>1. 1. 1</u> . 1. 1. 2 <u>1. 1. 1.</u> 1. 1. 1. 1. 1.		<u>ماتند : .</u> 12 ایست : 1		_	10	1.43			2	X			1				-			2969 G					<u> </u>							
-02 11-1-00	$(1 \times 1 \times 1 \times 1)$		X	i Alini kasa				12-	29-08 700	<u>, 64</u>					7 X	7 19 (80)		6.2		1	12.6	9.4-3	इंग्रेस		14				Š							
73 P-16-29	1-0.5/ 2 1-0.5/ 2		X V					12-	21-00 732 M.00 5 7	- 67					~	0.2104	- 49-64 -		ية 15 الجيد	941,085	2/14/12	34 303	10/5	Stata V.		1 Cine	hi sçi si t	RAN HEAR	Ĉ.							
1	3-45 38		Kunter	i monselte		124,7		Iz-	29-46 10:3	0 KS	sĺx			×	x				X										ō							
7731-566	-H)DJ3	<u>E907131</u>	X	94 <u>- 197 - 197 - 19</u>				12-	24-02 10:31	> [75	S X			X	7		1		X	1					in an a finite	-			0							
1 100 - 10 1 2 1 2 S			X					12	29-02 20-94	e p]	d x			Ιγ.	× I				¥.		A (1946) Z (1946)			i de la composition Composition de la composition de la comp	leti (de) Galeria		r		<u> </u>							
-08 11:535	6-5/3-		\mathbf{x}		·			- 17-	20,00 11:15	[2] ĵ	< Y			Y	4				X		-		1													
-09 TO.R. 55	6-03		Y				2 1 0103	12		45	¥ ×			X	×ļ				<u>× </u>				1. 1.	1												
, -10 TP-1-56 (\$5-45) 3		¥.	و مستقدم المحمول الم			1	/2-	23-08 12:45	- 195	<u>X</u>			X.	*		1		*			1000			-				\sim							
N -11 TP-46-20	(=3) 3		X				1	J2-	-24-02 1430	> K <u>s</u>	X		ar kina	X	X []				×		M Suit								<u>C;</u>							
TAT REQUESTED	* See ww	w.res	slabs.co	m for	SPE	EQIA	LINST	IRUC	TIONS	ALC	sis.																									
Priority (24 hr)* 1	and cur	acce rentá	ptance prance pr	poncy ation lists	Ver	UNTU Haran D	0. – 1 daci	к. н. ч. С	louis bur	Che ja and	631-	\$																								
Standard Cl										40																										
(10 Business Days)	shone /a	in the second	ndracel	DON K	1. 1 k 1. A	r D	ųž.,	Res	ERT SAUND	625	пнее	t (soéc	ify)									τ	EMP	ERA	TURE	-			°C							
	Belinouisbe	d by	Sampler:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,]	Date	Т	me	R	ceive	d by:							in Hanna i In H	<u></u>		T	Dai	e	1	Time	-							
AUCTAIN			the second s										:											_												
CUSION	Fielinquisho	d by:							Date	Ti	me	R	ceive	ad by:											Dal		ł	ume								
RECORD	Relinguishe	od by:	••••••••••••••••••••••••••••••••••••••				·····		Date	Tī	me	Fle	eceive	ed by	Labo	bratory	Γ,	,	,						Dai	lð	<u>L</u>	Time	-							
ſ						-						W	ay Si	10					Muniteda							****										
	22			and a second	ALCONO. IN COLUMN	014030409470	a second division in which the second se	and the second se		Committee of the owner of the owner of		and the second																-	· ·							
КІ	L,	leso	urc	e	Lal	bor	at	ori	es,	LL	С						CI Al	IAI VD	N-C AN) <i>F-4</i> 41)	CU: /SI	ST(S A	DD) EQ	' RI UE	ECC ST	DRI	2									
--------------------------------	-------------------	-------------	---------------	------------	-----------	--------------	----------	-----------	------------	----------	----------	----------------	--------------------	-----------	----------	---------------	--	-----------	------------	---------------------	-------------	------------	-----------	------------	-----------	----------	-----------	--------------------	------------------------	--------------	--------------	----------	--------------	--	----------	------------
	12	24 Herit	age.	AVC.	10C •	Por	15000	nuth,	NH	0380	ι			·			,						ļ	W	LYS	IS.	RE(ŊIJ.	EST							
innany Nag	N.	NOILE: OG	15-40	10+2	, vi	FR	X: 90	19-43	0-21 Pl	ione	ź:			i			Contraction of the local division of the loc			pris			Т					Ţ		漫	and diam.					
									E/	X #:							An		10 WY 1920	(Firge					1.					TCHE	ŧ.	stroo				
mpany Add	ess:								P	ojeci	Info:	N	а ма	ME	v	Ť	630		C. Markan	010					Arth			1		AND C		CU'F	S.			
Tot									-P	oject	Nain	¢:				Į	269 1.0			NOEP	1	NTC8			D.M.					0.80	1ő		First			
apore nos									γ.	ojeci	e:						100.8		-	ERIAN	E REM SU	24 10			1 44					194	lie 5	P SNOT	1CI			
vojça To;									Р	otoco	d;	RCA Mép	A SOW	A N	PDE	s B	UL SAN	Well, o		10 88	0 33	10 14	SUSSO		hint N			A TANK N PARTICIPA	would be comercia	1 13	D Ra	101101	1 #551			
Lab			ş	Π,	Jatr	rix	Τ	Pre	sei	vat	іоп		San	nolin	σ	-	5 K209 (0)		1 0433	EMCI (D Her	f isld	1990 Jack		TSAMP PO		je L		Phradi L	080	Clm DI	CUT YES	- CI (tik	And a second		(c) qu
ample	Fie	eld	NEL NEL	F	T				Met	noc	<u> </u>			1		$\frac{1}{2}$	9 E	22	10 J	0.836	7.87	0.420	HO .		ā	÷.	Eah-I			Nullet	13	\$ CI	1 100			ĝ.
ID ib tise their)	1	D	CONTA	ATER	P	THER	5	ő.	NOS.	HO	HOa	DHER Sudit)	ATE	Æ		AMPLE	100130	VICE (SI	VI'S MARK		ECHIMAN 1	TOD? PCB	035169		RCM MAR	TCAL NEW	Diescheid	Enotium	T-Fluxped Creater C	補給ロ	Constraint	IQP Mod	toonart.			8 [] ()
~ 1		0 (21ha	1	<u> </u> ≩	100	0	토	<u>E</u>	Ξ	ž	Σ	ΞĒ	<u>5</u> 178/08	F		3	র Y		012 1	10	ם			3 6						╀╸	몓	0	a		+	18
	1.50	r Duw		╈	÷1	+	1-		<u> </u>			-	<u>telenta</u>		;	-	Δ		*	1	1		-	1	-		t	1		1		1		Ť.	İ.	
					1	Ť.	[3	I										-	Ť	1		aliana.								Ī					[
							<u> </u>		ļ									_	Å	1		-		4	<u> </u>					4-	<u> </u>	<u> </u>				<u>.</u>
						·	.												4		-		<u> </u>	+	+					+	1					<u>.</u>
				-				1				—			-				-†-	+	1		Ť	1	+			-		+-	÷	+		-+-	+	
				-	† –		1	1			·									İ	Í		-1-	1	ł			Ì		T	\mathbf{T}	Í.		Ē		<u> </u>
								ļ							j						1			1	-					1	1	Ļ				L
				4		1		ļ.	<u> </u>					1		_					<u> </u>	<u> </u>		-	<u> </u>			+		┿	÷					-
		C da un		L.		l. m teri		Antin 1		land		tiest	ISPECI	AL INS	TRI	UCT	0	s		l	1	2 1	1	1	1	<u> </u>	. ? .	, li	. 1		ł	ş	1 1			1
IT REQUES	TED	and cu	rreni	acc	redila	tion	lists.	i parte z	i Aria	, Car 14	0.00	riwy.																								
xonly (24 m) condited (49 m	и Ф Б ел	alf Artrine]																							
Businees Da	nC O	-te #.											REPO	TING	INS	ITRU	JCT	ION	S				,				F	;EC	EIVE	Т	DE I	CΞ		YES		IO.
210 1406060	20												O FAX	00	THE	R (sp	ecij	4									- -	ΈŴ	PER	AT	JRE					Ċ
	i2	Bella	ó <i>nieš</i>	ed b	. Sar	nier								C:D Na	400i i	sprea Time	ici sin e	ieet F	acoly	ed b												Data			Time	
- IIetr	יחר	, [- 													\downarrow					-	
	uru I Virul I	Relia	quist	ed b	/:								D	12		โปร	a	F	ecely	ed b	S ':										ſ	Naie	l.	I	ume	
RECC	кD	Relia	quist	ed b	γi								Di	to-	<u>ا</u>	Tara	¢	F	dcciv	ed by	Lat	iorati	ory:									Date	l	<u> </u>	Tane	

.

· .

.

.

General QAPP Information Date: 11/04/08 Page A3A-4 of A3A-50 Resource Laboratories, LLC

15945

\mathbf{R}	Re	SOUR Heritage	ce]		DOT Port	ato	o rie uth, 1	2S, NH (LL()380]	C 1					CH. AN	AIN D A	-Ol NA	F-C LY	US SIS	TOI RE	DY QU	RE ES	CO. T	RD			1	15	92	1 5		
Company Na LOUIS Company Ac Company Ac Company Ac MA Report To: DOrv Ac Phone #: 603 nvoice To:	Photometric product \mathcal{B} and	ne: 603-4 (j.lowP EET, S LA E IRK (CIRK (Fe 600 380 ncHE SI	136-20 / (/ H / H / H / H H H H R (H R R R R	GZ ZC 23 D, 362 2027	- Fa - A - 3 - 30 - 40 -	2 7 7 7 4 6 2 3 10	13-430 LBG	Pr Pr Pr Pr Pr Re Lir Qu PC	OU oject oject otoco otoco portir mits: uote #	Nam f- #: O⁴ Loca si: ng ⊂	e: A 2£ T 4.0 ttion: RCF MCF EPA	ノHAN(とにふって のこちをり (NH)MA IA SDW 2 NHD D GW- DW Othe	(ARM ; NH 3.01 ME VT (A NPD ES OTH 1 S-1	other ES ER	VOC 8260 NHDES 🗆 VOC 8260 MADEP	OU BIEX LI MOBE, ONLY] MEGRO DI GRO 8015	VOC 524,2 NH List	1015 🗆 Medro 🗂 EPH Madep 🔄 TPH Fingerprint	270ABN [] 625 [] EDB 504.1	euer resurues 🗆 oue resurue Mineral D&G SM5520F	Conductivity Turbidity	TS D Akalinity	🗆 Priority Pollutant Metals 🖂 TAL. Metals			C Phenol	Ultide 🗆 Nitrate + Nitrite 🗆 Ortho P	ite 🗆 Chloride 🛄 Sultate 🛄 Bromide 🛄 Fluoride	Reactive CN 🗆 Reactive S- 🗖 ignitibility/FP	10L C Grain Size D TCLP Herbicides		
Lab Sample ID (Lab Use Only)	Fiel	CONTAINERS			OTHER X	Pre 10+	°onh	vatio	NaOH	HO ₉ M	OTHER (Specify)	DATE	npling	SAMPLER*			□ V0C 524.2 □	A TPH K DR0 8	448270PAH □ 8		C PH C BOD		K RCRA Metals	Iotal Metals-Iis Dissolved Meta		T-Phosphorus	🗆 Cyanide 🗆 Si	O Nitrate O Nit	Corrosivity C	Subcontract:		
15945-01	TP-9-5B (z-6)7		X				-		İ		12-24-08	800	RJS	χ			X	×				*			-				\bot		
D2	TP-7-56((4565)3		X	ļ							12-24-08	900	RJ3	X			×	*				×				\vdash	\vdash		—		
73	TP 16-55	3 (2.3-1		X						. I		12-29-08	950	R55	*			×	*				× 		_			╞──┼			+	
<u> </u>	TP-12-55(5.6,5	<u> </u>	X						1		12-61-60	10:25	RUJ	<u> </u>			×	<u>×</u>	_			X				+	┢─┤		+	+	
<u> </u>	TP-11-58 (<u>د (۲~3</u>	,	X						1		12-29-08	10:50	1255	<u>~</u>		-	X	X		+		×		-	-	+1			+		
76	922-11-11		<u>}</u>	$\frac{1}{\sqrt{2}}$								12-79-05	10:30	RJS	N V			Υ X	¥	+			x			+						
<u> </u>	19-15-55/	(0-05)3	-	×						, 1		12-29-05	11:15	RJS	X	···		X	¥				x			\uparrow			十	+		
19	TP-14-55/	0-0,5)3	. -	X								12-29-06	in.zo	RJJ	X			×	×				×									
 0	TP 1-53 (2	5-45)3	; [X						1		12-29-08	iz:45	RIJ	X			X	4				*									
71	TP-4A-35	(z-3) 3	3	X						I		12-29-02	14:30	ĸŢ	X			X	×				X									
TAT REQ Priority (24 hr Expedited (48 Standard	UESTED r)**	* See w sampl and cl	ww.re le acc urrent	eslab eptar accr	s.con Ice p edita TRU	n for olicy tion l	ists.	SPE Dei r Se	ECIA NAU Lun (LIN D. K der Hab	STR () () () () () () () () () ()		S C (ZA S berge JIRED	1.Com 57 CO 57 F/	X] EX(CEL	SPRE	ADS	HEE					F	RECI	EIVE		IICE	XY	ËS⁄ I
(10 Business D **Date Neede	ays) ed		(e-mai	l addr	ess)	Do	JK	CK 10	₩D	ų	- 1	ROBERT S	Aunder	د. HTO ⊡	ER (specif	y) _									ר [_	FEMF	PER/	TUR	E		<u> </u>
		Relinquiz	fied by	/ Sam	pler:							Da		Time	e	Rec	ceive	dby	1		(h)	Λ	$\langle \rangle$						Da 12-	ite 29-0	08	Tim 9:0
CUST	ODY	Rélinquis	hed by	7: <u>1</u>	<u></u>							Da	ite	Time	.	Red	ceive	d by	∱	<u> </u>	1	<u>\</u>	<u></u>	<u> </u>				╋	Da	ite	 	Tin
REC	ORD	\Box	<u></u>	<u> W</u>	۱	-N	4	-				12-30	0.03	<u>0: 0'</u>	2		nob ic	d bu			1	\rightarrow	\square					+	- <u>D</u>	ate.		Tim
		Relinquis	shed by	/: ``								Da	ate	fime	3		ceive		LCED@	rator	1	5							, la	la	211	NO)

APPENDIX E

GROUNDWATER ANALYTICAL RESULTS

Resource Laboratories, LLC

124 Heritage Avenue #10 Portsmouth, NH 03801

Donald Kirkland GZA GeoEnvironmental, Inc. Airpark Business Center 380 Harvey Rd Manchester, NH 03103-3347

PO Number: None LabID: 16048 Date Received: 1/30/09

Project: 04.0024843.01 Peterboro NHANG Armory

Attached please find results for the analysis of the samples received on the date referenced above.

Unless otherwise noted in the attached report, the analyses performed met the requirements of Resource Laboratories, LLC Quality Assurance Plan. The Standard Operating Procedures (SOP) are based upon USEPA SW-846, USEPA Methods for Chemical Analysis of Water and Wastewater, Standard Methods for the Examination of Water and Wastewater and other recognized methodologies. The results contained in this report pertain only to the samples as indicated on the chain of custody.

Resource Laboratories, LLC maintains certification with the agencies listed below.

We appreciate the opportunity to provide laboratory services. If you have any questions regarding the enclosed report, please contact the laboratory and we will be glad to assist you.

Sincerely, Resource Laboratories, LLC

'ሔ-) lell

Susan(§ylvester Principal, General Manager

2/10/09

Date

Total number of pages

Resource Laboratories, LLC Certifications

New Hampshire 1732 Maine NH903

Massachusetts M-NH902

Lab ID: 16048

Lab Number: 16048-001

Sample ID: MW-1

Sampled: 1/29/09 13:40	Desult	Quant	11-16-	Instr Dil'n	Analiset	Prep	Detals	Ana	alysis Time	
Parameter	Result	LIIIIL	Units	Factor	Analyst	Date	Batch	Date	Time	Reference
alchiorodilluoromethane	< 2	2	ug/L	1			0900236	2/5/09	7:02	SW5030B8260B
	< 2	2	ug/L	1	LMM		0900236	2/5/09	7:02	SW5030B8260B
	< 2	2	ug/L	1	LMM		0900236	2/5/09	7:02	SW5030B8260B
bromomethane	<2	2	ug/L	1	LMM		0900236	2/5/09	7:02	SW5030B8260B
chloroethane	<2	2	ug/L	1	LMM		0900236	2/5/09	7:02	SW5030B8260B
	< 2	2	ug/L	1	LMM		0900236	2/5/09	7:02	SW5030B8260B
diethyl ether	< 5	5	ug/L	1	LMM		0900236	2/5/09	7:02	SW5030B8260B
acetone	< 50	50	ug/L	1	LMM		0900236	2/5/09	7:02	SW5030B8260B
1,1-dichloroethene	< 1	1	ug/L	1	LMM		0900236	2/5/09	7:02	SW5030B8260B
methylene chloride	< 5	5	ug/L	1	LMM		0900236	2/5/09	7:02	SW5030B8260B
carbon disulfide	< 2	2	ug/L	1	LMM		0900236	2/5/09	7:02	SW5030B8260B
methyl t-butyl ether (MTBE)	< 2	2	ug/L	1	LMM		0900236	2/5/09	7:02	SW5030B8260B
trans-1,2-dichloroethene	< 2	2	ug/L	1	LMM		0900236	2/5/09	7:02	SW5030B8260B
isopropyl ether (DIPE)	< 2	2	ug/L	1	LMM		0900236	2/5/09	7:02	SW5030B8260B
ethyl t-butyl ether (ETBE)	< 2	2	ug/L	1	LMM		0900236	2/5/09	7:02	SW5030B8260B
1,1-dichloroethane	< 2	2	ug/L	1	LMM		0900236	2/5/09	7:02	SW5030B8260B
t-butanol (TBA)	< 30	30	ug/L	1	LMM		0900236	2/5/09	7:02	SW5030B8260B
2-butanone (MEK)	< 10	10	ug/L	1	LMM		0900236	2/5/09	7:02	SW5030B8260B
2,2-dichloropropane	< 2	2	ug/L	1	LMM		0900236	2/5/09	7:02	SW5030B8260B
cis-1,2-dichloroethene	< 2	2	ug/L	1	LMM		0900236	2/5/09	7:02	SW5030B8260B
chloroform	< 2	2	ug/L	1	LMM		0900236	2/5/09	7:02	SW5030B8260B
bromochloromethane	< 2	2	ug/L	1	LMM		0900236	2/5/09	7:02	SW5030B8260B
tetrahydrofuran (THF)	< 10	10	ug/L	1	LMM		0900236	2/5/09	7:02	SW5030B8260B
1,1,1-trichloroethane	< 2	2	ug/L	1	LMM		0900236	2/5/09	7:02	SW5030B8260B
1,1-dichloropropene	< 2	2	ug/L	1	LMM		0900236	2/5/09	7:02	SW5030B8260B
t-amyl-methyl ether (TAME)	< 2	2	ug/L	1	LMM		0900236	2/5/09	7:02	SW5030B8260B
carbon tetrachloride	< 2	2	ug/L	1	LMM		0900236	2/5/09	7:02	SW5030B8260B
1,2-dichloroethane	< 2	2	ug/L	1	LMM		0900236	2/5/09	7:02	SW5030B8260B
benzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	7:02	SW5030B8260B
trichloroethene	< 2	2	ug/L	1	LMM		0900236	2/5/09	7:02	SW5030B8260B
1,2-dichloropropane	< 2	2	ug/L	1	LMM		0900236	2/5/09	7:02	SW5030B8260B
bromodichloromethane	< 0.6	0.6	ug/L	1	LMM		0900236	2/5/09	7:02	SW5030B8260B
1,4-dioxane	< 50	50	ug/L	1	LMM		0900236	2/5/09	7:02	SW5030B8260B
dibromomethane	< 2	2	ug/L	1	LMM		0900236	2/5/09	7:02	SW5030B8260B
4-methyl-2-pentanone (MIBK)	< 10	10	ug/L	1	LMM		0900236	2/5/09	7:02	SW5030B8260B
cis-1,3-dichloropropene	< 2	2	ug/L	1	LMM		0900236	2/5/09	7:02	SW5030B8260B
toluene	< 2	2	ua/L	1	LMM		0900236	2/5/09	7:02	SW5030B8260B
trans-1,3-dichloropropene	< 2	2	ua/L	1	LMM		0900236	2/5/09	7:02	SW/5030B8260B
2-hexanone	< 10	10	ua/L	1	LMM		0900236	2/5/09	7:02	SW5030B8260B
1,1,2-trichloroethane	< 2	2	ua/L	1	LWW		0900236	2/5/09	7:02	SW/5030B8260B
1,3-dichloropropane	< 2	2	-9/-	1	1 MM		0900236	2/5/00	7.02	SW5030882608
tetrachloroethene	< 2	2	ə·= μα/Ι	1	LWW		0900236	2/5/00	7,02	SW5030B0200D
dibromochloromethane	< 2	2		, 1	LWW		0000200	2/5/00	7.02	SW5030B0200B
1.2-dibromoethane (EDB)	< 2	2	ug/⊑ ⊔n/l	1			0000200	2/5/00	7.02	S/M2030002000
· · · · · · · · · · · · · · · · · · ·	· -	-	- agric	•			0000200	2000	1.02	SW JUJUDUZUUD

Lab ID: 16048

Lab Number: 16048-001

Sample ID: MW-1

Sampled: 1/29/09 13:40		Quant		Instr Dil'n		Prep		Ana	lysis	
Parameter	Result	Limit	Units	Factor	Analyst	Date	Batch	Date	Time	Reference
chlorobenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	7:02	SW5030B8260B
1,1,1,2-tetrachloroethane	< 2	2	ug/L	1	LMM		0900236	2/5/09	7:02	SW5030B8260B
ethylbenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	7:02	SW5030B8260B
m&p-xylenes	< 2	2	ug/L	1	LMM		0900236	2/5/09	7:02	SW5030B8260B
o-xylene	< 2	2	ug/L	1	LMM		0900236	2/5/09	7:02	SW5030B8260B
styrene	< 2	2	ug/L	1	LMM		0900236	2/5/09	7:02	SW5030B8260B
bromoform	< 2	2	ug/L	1	LMM		0900236	2/5/09	7:02	SW5030B8260B
isopropylbenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	7:02	SW5030B8260B
1,1,2,2-tetrachloroethane	< 2	2	ug/L	1	LMM		0900236	2/5/09	7:02	SW5030B8260B
1,2,3-trichloropropane	< 2	2	ug/L	1	LMM		0900236	2/5/09	7:02	SW5030B8260B
n-propylbenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	7:02	SW5030B8260B
bromobenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	7:02	SW5030B8260B
1,3,5-trimethylbenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	7:02	SW5030B8260B
2-chlorotoluene	< 2	2	ug/L	1	LMM		0900236	2/5/09	7:02	SW5030B8260B
4-chlorotoluene	< 2	2	ug/L	1	LMM		0900236	2/5/09	7:02	SW5030B8260B
tert-buty/benzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	7:02	SW5030B8260B
1,2,4-trimethylbenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	7:02	SW5030B8260B
sec-butylbenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	7:02	SW5030B8260B
1,3-dichlorobenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	7:02	SW5030B8260B
4-isopropyltoluene	< 2	2	ug/L	1	LMM		0900236	2/5/09	7:02	SW5030B8260B
1,4-dichlorobenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	7:02	SW5030B8260B
1,2-dichlorobenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	7:02	SW5030B8260B
n-butylbenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	7:02	SW5030B8260B
1,2-dibromo-3-chloropropane (DBCP)	< 2	2	ug/L	1	LMM		0900236	2/5/09	7:02	SW5030B8260B
1,2,4-trichlorobenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	7:02	SW5030B8260B
1,3,5-trichlorobenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	7:02	SW5030B8260B
hexachlorobutadiene	< 0.5	0.5	ug/L	1	LMM		0900236	2/5/09	7:02	SW5030B8260B
naphthalene	< 5	5	ug/L	1	LMM		0900236	2/5/09	7:02	SW5030B8260B
1,2,3-trichlorobenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	7:02	SW5030B8260B
Surrogate Recovery		Limits								
dibromofluoromethane SUR	101	78-114	%	1	LMM		0900236	2/5/09	7:02	SW5030B8260B
toluene-D8 SUR	95	88-110	%	1	LMM		0900236	2/5/09	7:02	SW5030B8260B
4-bromofluorobenzene SUR	90	86-115	%	1	LMM		0900236	2/5/09	7:02	SW5030B8260B

Lab ID: 16048

Lab Number: 16048-002

Sample ID: MW-2

Sampled: 1/29/09 11 Parameter	:40 Result	Quant Limit	Units	Instr Dil'n Factor	Analvst	Prep Date	Batch	Ana Date	alysis Time	Reference
dichlorodifluoromethane	< 2	2	ua/L	1	LMM		0900236	2/5/09	5:02	SW5030B8260B
chloromethane	< 2	2	ua/L	1	LMM		0900236	2/5/09	5:02	SW5030B8260B
vinvl chloride	< 2	2	ua/L	1	LMM		0900236	2/5/09	5:02	SW5030B8260B
bromomethane	< 2	2	ua/L	1	LMM		0900236	2/5/09	5.02	SW5030B8260B
chloroethane	< 2	2	+g/= ua/l	1	1 MM		0900236	2/5/09	5:02	SW5030B8260B
trichlorofluoromethane	< 2	2	ua/l	1	I MM		0900236	2/5/09	5:02	SW5030B8260B
diethyl ether	< 5	5	ug/L	1	LMM		0900236	2/5/09	5.02	SW5030B8260B
acetone	< 50	50	ua/L	1	LMM		0900236	2/5/09	5:02	SW5030B8260B
1.1-dichloroethene	< 1	1	ua/l	1	LMM		0900236	2/5/09	5:02	SW5030B8260B
methylene chloride	< 5	5	ua/L	1	LMM		0900236	2/5/09	5:02	SW5030B8260B
carbon disulfide	< 2	2	ug/t	, 1	LMM		0000200	2/5/00	5.02	SW5030B8260B
methyl t-butyl ether (MTBE)	< 2	2	ug/L	1			0000200	2/5/00	5.02	SW/5030B8260B
trans-1 2-dichloroethene	< 2	2	ug/L	1			0000200	2/5/09	5.02	SW5030B0200B
isopropyl other (DIPE)	~ 2	2	ug/L	י ז			0000200	2/5/09	5.02	SW5030B0200B
otbyl t-bytyl otbor (ETRE)	< 2	2	ug/L	1			0000230	2/5/09	0:0Z	SW5030B0200B
1 1 dicbloroothana	< 2	2	ug/L	1			0900230	2/3/09	5:02	SW0030B8260B
f-butanol (TRA)	< 20	2	ug/L	1			0900230	2/3/09	5:02	SW00000000000
2 butanono (MEK)	< 30	10	ug/L	1			0800230	2/3/09	5.02	SW5030D0200D
2.2 dichloropropopo	< 10	2	ug/L	1			0900230	2/3/09	5.02	SW5030D0200D
aic 1.2 dickloroothono	< 2	2	ug/L	1			0900230	2/3/09	0:02	SW5030B6260B
clo-1,2-dichioroethene	>2	2	ug/L	1			0900230	2/5/09	5:02	SW5030B8260B
bramachloramathana	~ 2	2	ug/L	ł			0900230	2/0/09	5:0Z	SW5030B8260B
	< 2	2 40	ug/L	1			0900236	2/5/09	5:02	SW5030B8260B
tetranyoroturan (THF)	< 10	10	ug/L	1			0900236	2/5/09	5:02	SW5030B8260B
	< 2	2	ug/L	1	LMM		0900236	2/5/09	5:02	SW5030B8260B
1,1-dichloropropene	< 2	2	ug/L	1	LMM		0900236	2/5/09	5:02	SW5030B8260B
t-amyl-methyl ether (TAME)	< 2	2	ug/L	1	LMM		0900236	2/5/09	5:02	SW5030B8260B
carbon tetrachloride	< 2	2	ug/L	1	LMM		0900236	2/5/09	5:02	SW5030B8260B
1,2-dichloroethane	< 2	2	ug/L	1	LMM		0900236	2/5/09	5:02	SW5030B8260B
benzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	5:02	SW5030B8260B
trichloroethene	< 2	2	ug/L	1	LMM		0900236	2/5/09	5:02	SW5030B8260B
1,2-dichloropropane	< 2	2	ug/L	1	LMM		0900236	2/5/09	5:02	SW5030B8260B
bromodichloromethane	< 0.6	0.6	ug/L	1	LMM		0900236	2/5/09	5:02	SW5030B8260B
1,4-dioxane	< 50	50	ug/L	1	LMM		0900236	2/5/09	5:02	SW5030B8260B
dibromomethane	< 2	2	ug/L	1	LMM		0900236	2/5/09	5:02	SW5030B8260B
4-methyl-2-pentanone (MIBK)	< 10	10	ug/L	1	LMM		0900236	2/5/09	5:02	SW5030B8260B
cis-1,3-dichloropropene	< 2	2	ug/L	1	LMM		0900236	2/5/09	5:02	SW5030B8260B
toluene	< 2	2	ug/Ł	1	LMM		0900236	2/5/09	5:02	SW5030B8260B
trans-1,3-dichloropropene	< 2	2	ug/L	1	LMM		0900236	2/5/09	5:02	SW5030B8260B
2-hexanone	< 10	10	ug/L	1	LMM		0900236	2/5/09	5:02	SW5030B8260B
1,1,2-trichloroethane	< 2	2	ug/L	1	LMM		0900236	2/5/09	5:02	SW5030B8260B
1,3-dichloropropane	< 2	2	ug/L	1	LMM		0900236	2/5/09	5:02	SW5030B8260B
tetrachloroethene	< 2	2	ug/L	1	LMM		0900236	2/5/09	5:02	SW5030B8260B
dibromochloromethane	< 2	2	ug/L	1	LMM		0900236	2/5/09	5:02	SW5030B8260B
1,2-dibromoethane (EDB)	< 2	2	ug/L	1	LMM		0900236	2/5/09	5:02	SW5030B8260B

Lab ID: 16048

Lab Number: 16048-002

Sample ID: MW-2

Sampled: 1/29/09 11:40		Quant		Instr Dil'n		Prep		Ana	lvsis	
Parameter	Result	Limit	Units	Factor	Analyst	Date	Batch	Date	Time	Reference
chlorobenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	5:02	SW5030B8260B
1,1,1,2-tetrachloroethane	< 2	2	ug/L	1	LMM		0900236	2/5/09	5:02	SW5030B8260B
ethylbenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	5:02	SW5030B8260B
m&p-xylenes	< 2	2	ug/L	1	LMM		0900236	2/5/09	5:02	SW5030B8260B
o-xylene	< 2	2	ug/L	1	LMM		0900236	2/5/09	5:02	SW5030B8260B
styrene	< 2	2	ug/L	1	LMM		0900236	2/5/09	5:02	SW5030B8260B
bromoform	< 2	2	ug/L	1	LMM		0900236	2/5/09	5:02	SW5030B8260B
isopropylbenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	5:02	SW5030B8260B
1,1,2,2-tetrachloroethane	< 2	2	ug/L	1	LMM		0900236	2/5/09	5:02	SW5030B8260B
1,2,3-trichloropropane	< 2	2	ug/L	1	LMM		0900236	2/5/09	5:02	SW5030B8260B
n-propylbenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	5:02	SW5030B8260B
bromobenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	5:02	SW5030B8260B
1,3,5-trimethylbenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	5:02	SW5030B8260B
2-chlorotoluene	< 2	2	ug/L	1	LMM		0900236	2/5/09	5:02	SW5030B8260B
4-chlorotoluene	< 2	2	ug/L	1	LMM		0900236	2/5/09	5:02	SW5030B8260B
tert-butylbenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	5:02	SW5030B8260B
1,2,4-trimethylbenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	5:02	SW5030B8260B
sec-butylbenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	5:02	SW5030B8260B
1,3-dichlorobenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	5:02	SW5030B8260B
4-isopropyltoluene	< 2	2	ug/L	1	LMM		0900236	2/5/09	5:02	SW5030B8260B
1,4-dichlorobenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	5:02	SW5030B8260B
1,2-dichlorobenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	5:02	SW5030B8260B
n-butylbenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	5:02	SW5030B8260B
1,2-dibromo-3-chloropropane (DBCP)	< 2	2	ug/L	1	LMM		0900236	2/5/09	5:02	SW5030B8260B
1,2,4-trichlorobenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	5:02	SW5030B8260B
1,3,5-trichlorobenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	5:02	SW5030B8260B
hexachlorobutadiene	< 0.5	0.5	ug/L	1	LMM		0900236	2/5/09	5:02	SW5030B8260B
naphthalene	< 5	5	ug/L	1	LMM		0900236	2/5/09	5:02	SW5030B8260B
1,2,3-trichlorobenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	5:02	SW5030B8260B
Surrogate Recovery		Limits								
dibromofluoromethane SUR	97	78-114	%	1	LMM		0900236	2/5/09	5:02	SW5030B8260B
toluene-D8 SUR	96	88-110	%	1	LMM		0900236	2/5/09	5:02	SW5030B8260B
4-bromofluorobenzene SUR	93	86-115	%	1	LMM		0900236	2/5/09	5:02	SW5030B8260B

Lab ID: 16048

Lab Number: 16048-003

Sample ID: MW-3 dup

Matrix: Water

Sampled: 1/29/09 12:2	5	Quant	t 1 34	Instr Dil'n	Annivet	Prep	Patab	Ana	alysis Timo	Defense
Parameter	Result		Units	Factor	Analyst	Date	Daton		Time	Reference
dichlorodifiuoromethane	< 2	2	ug/L	1			0900236	2/5/09	6:02	SW5030B8260B
chloromethane	< 2	2	ug/L	1			0900236	2/5/09	6:02	SW5030B8260B
vinyl chloride	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
bromomethane	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
chloroethane	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
trichlorofluoromethane	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
diethyl ether	< 5	5	ug/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
acetone	< 50	50	ug/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
1,1-dichloroethene	< 1	1	ug/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
methylene chloride	< 5	5	ug/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
carbon disulfide	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
methyl t-butyl ether (MTBE)	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
trans-1,2-dichloroethene	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
isopropyl ether (DIPE)	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
ethyl t-butyl ether (ETBE)	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
1,1-dichloroethane	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
t-butanol (TBA)	< 30	30	ug/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
2-butanone (MEK)	< 10	10	ug/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
2,2-dichloropropane	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
cis-1,2-dichloroethene	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
chloroform	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
bromochloromethane	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
tetrahydrofuran (THF)	< 10	10	ug/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
1,1,1-trichloroethane	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
1,1-dichloropropene	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
t-amyl-methyl ether (TAME)	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
carbon tetrachloride	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
1,2-dichloroethane	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
benzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
trichloroethene	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
1,2-dichloropropane	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
bromodichloromethane	< 0.6	0.6	ug/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
1,4-dioxane	< 50	50	ug/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
dibromomethane	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
4-methyl-2-pentanone (MIBK)	< 10	10	ug/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
cis-1,3-dichloropropene	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
toluene	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
trans-1,3-dichloropropene	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
2-hexanone	< 10	10	ua/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
1.1.2-trichloroethane	< 2	2	ua/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
1,3-dichloropropane	< 2	2	ua/l	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
tetrachloroethene	<2	- 2	ua/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
dibromochloromethane	< 2	2	ua/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
1,2-dibromoethane (EDB)	<2	2	ua/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
	-	_	- <u>-</u>	•						2.1.00000000000000000000000000000000000

į

;

Lab ID: 16048

Lab Number: 16048-003

Sample ID: MW-3 dup

Matrix: Water

Sampled: 1/29/09 12:25		Quant		Instr Dil'n		Prep		Ana	lysis	
Parameter	Result	Limit	Units	Factor	Analyst	Date	Batch	Date	Time	Reference
chlorobenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
1,1,1,2-tetrachloroethane	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
ethylbenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
m&p-xylenes	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
o-xylene	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
styrene	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
bromoform	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
isopropylbenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
1,1,2,2-tetrachloroethane	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
1,2,3-trichloropropane	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
n-propylbenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
bromobenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
1,3,5-trimethylbenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
2-chlorotoluene	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
4-chlorotoluene	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
tert-butylbenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
1,2,4-trimethylbenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
sec-butylbenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
1,3-dichlorobenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
4-isopropyltoluene	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
1,4-dichlorobenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
1,2-dichlorobenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
n-butylbenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
1,2-dibromo-3-chloropropane (DBCP)	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
1,2,4-trichlorobenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
1,3,5-trichlorobenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
hexachlorobutadiene	< 0.5	0.5	ug/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
naphthalene	< 5	5	ug/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
1,2,3-trichlorobenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
Surrogate Recovery		Limits								
dibromofluoromethane SUR	99	78-114	%	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
toluene-D8 SUR	94	88-110	%	1	LMM		0900236	2/5/09	6:02	SW5030B8260B
4-bromofluorobenzene SUR	88	86-115	%	1	LMM		0900236	2/5/09	6:02	SW5030B8260B

.

Lab ID: 16048

Lab Number: 16048-004

Sample ID: MW-3

Parameter Result Link Onits Facult Parameter Chloroomthane < 2 2 ugfl 1 LMM 0900247 2/0/09 15:52 SW5030B8260B chloroomthane < 2 2 ugfl 1 LMM 0900247 2/0/09 15:52 SW5030B8260B bromomethane < 2 2 ugfl 1 LMM 0900247 2/0/09 15:52 SW5030B8260B chloroothane < 2 2 ugfl 1 LMM 0900247 2/0/09 15:52 SW5030B8260B chloroothane < 2 2 ugfl 1 LMM 0900247 2/0/09 15:52 SW5030B8260B acetone < 50 50 ugfl 1 LMM 0900247 2/0/09 15:52 SW5030B8260B carbon disulfido < 5 5 ugfl 1 LMM 0900247 2/0/09 15:52 SW5030B8260B carbon disulfido < 2 2 ugfl 1 LMM 0900247 2/0/09 15:52 SW5030B8260B	Sampled: 1/29/09 12	:30 Bosult	Quant	Unite	Instr Dil'n	Apolyot	Prep	Batch	An Data	alysis Timo	Deference
Durin Double Hame Link DB0/247 J/2019 15.22 SWB030B820B viny ichioride 2 ugl. 1 LMM DB0/247 J/2019 15.52 SW5030B820B bromomethane 2 ugl. 1 LMM DB0/247 J/2019 15.52 SW5030B820B bromomethane 2 ugl. 1 LMM DB0/247 J/2019 15.52 SW5030B820B dichtyl ether 5 ugl. 1 LMM DB0/247 J/2019 15.52 SW5030B820B actone 50 ugl. 1 LMM DB0/247 J/2019 15.52 SW5030B820B actone 1 Ugl. 1 LMM DB0/247 J/2019 15.52 SW5030B820B carbon disulfide 2 ugl. 1 LMM DB0/247 J/2019 15.52 SW5030B820B carbon disulfide 2	disklare diffueremethene	Result		Units	Factor	Analysi L MANA	Date	0000047	210100	45,50	CW/5020D0200D
	alchorodingoromethane	< 2	2	ug/L	1			0900247	2/0/09	10:02	SW9030B0200B
Nith Charlon de Service Service Service Service Serv	unorometnane	< 2	2	ug/L	1			0900247	2/0/09	10:02	SW0030B6260B
	hrememethene	< 2	2	ug/L	1			0900247	2/0/09	10.02	SW5030B0200B
Characteristic C Z Qu/L 1 LMM CB00247 / 2/609 15:2 SVM03DB8200B diethyl ether < 5	oromomethane	< 2	2	ug/L	1	LIVIIVI		0900247	2/0/09	10:02	SW0030B8200B
International membrane 2 ug/L 1 LMM US00247 /2/009 15:25 SVM303DB8260B acetone <50	trichlorofluoromothone	< 2	2	ug/L	1			0900247	2/0/09	10:02	SW5030B0200B
useury entering 5 5 0g/L 1 LMM 0900247 26/09 15:52 SVM5030B2200B acetone <	diction of the start	< 2	2	ug/L	1			0900247	2/0/09	10:02	SW0030B8260B
attentine 500 552 500 552 500 552 500 552 500 500 552 500 500 552 500 500 552 500 500 552 500 500 552 500 500 552 500 500 552 5		< 5 < 50	0 F0	ug/L	1			0900247	2/0/09	10:02	SW0000B8200B
1, -locitoroefinene <1	4.4 diable readh an a	< 50	50	ug/L	1			0900247	2/0/09	15:52	SW5030B8260B
metrylene chloride 5 0 g/L 1 LMM 0900247 2/k/09 15:52 SW5030B8260B methyl t-butyl ether (MTBE) 2 2 ug/L 1 LMM 0900247 2/k/09 15:52 SW5030B8260B isopropyl ether (DIPE) 2 2 ug/L 1 LMM 0900247 2/k/09 15:52 SW5030B8260B isopropyl ether (DIPE) 2 2 ug/L 1 LMM 0900247 2/k/09 15:52 SW5030B8260B 1,1-dichloroethane 2 2 ug/L 1 LMM 0900247 2/k/09 15:52 SW5030B8260B 2-butanone (MEK) 0 ug/L 1 LMM 0900247 2/k/09 15:52 SW5030B8260B 2-dichloroethane 2 ug/L 1 LMM 0900247 2/k/09 15:52 SW5030B8260B 2-dichloroethane 2 ug/L 1 LMM 0900247<		< 1	1	ug/L	1			0900247	2/6/09	15:52	SW5030B8260B
carbon disultide < 2	methylene chloride	< 5	5	ug/L	1	LMM		0900247	2/6/09	15:52	SW5030B8260B
methyl t-buryl ether (MI BE) < 2 2 ug/L 1 LMM 0900247 2/6/09 15:52 SW5030B8280B trans-1,2-dichloroethene < 2	carbon disulfide	< 2	2	ug/L	1	LMM		0900247	2/6/09	15:52	SW5030B8260B
trans-1,2-dichloroethene < 2	methyl t-butyl ether (MIBE)	< 2	2	ug/L	1	LMM		0900247	2/6/09	15:52	SW5030B8260B
isopropylether (DIPE) <2	trans-1,2-dichloroethene	< 2	2	ug/L	1	LMM		0900247	2/6/09	15:52	SW5030B8260B
ethyl butyl ether (ETBE) < 2	isopropyl ether (DIPE)	< 2	2	ug/L	1	LMM		0900247	2/6/09	15:52	SW5030B8260B
1,1-dichloroethane <2	ethyl t-butyl ether (ETBE)	< 2	2	ug/L	1	LMM		0900247	2/6/09	15:52	SW5030B8260B
t-butanol (TBA) < 30	1,1-dichloroethane	< 2	2	ug/L	1	LMM		0900247	2/6/09	15:52	SW5030B8260B
2-butanone (MEK) <10	t-butanol (TBA)	< 30	30	ug/L	1	LMM		0900247	2/6/09	15:52	SW5030B8260B
2,2-dichloropropane <2	2-butanone (MEK)	< 10	10	ug/L	1	LMM		0900247	2/6/09	15:52	SW5030B8260B
cis-1,2-dichloroethene < 2	2,2-dichloropropane	< 2	2	ug/L	1	LMM		0900247	2/6/09	15:52	SW5030B8260B
chloroform < 2	cis-1,2-dichloroethene	< 2	2	ug/L	1	LMM		0900247	2/6/09	15:52	SW5030B8260B
bromochloromethane < 2 2 ug/L 1 LMM 0900247 2/6/09 15:52 SW5030B8260B tetrahydrofuran (THF) < 10	chloroform	< 2	2	ug/L	1	LMM		0900247	2/6/09	15:52	SW5030B8260B
tetrahydrofuran (THF) <10	bromochloromethane	< 2	2	ug/L	1	LMM		0900247	2/6/09	15:52	SW5030B8260B
1,1,1-trichloroethane < 2	tetrahydrofuran (THF)	< 10	10	ug/L	1	LMM		0900247	2/6/09	15:52	SW5030B8260B
1,1-dichloropropene < 2	1,1,1-trichloroethane	< 2	2	ug/L	1	LMM		0900247	2/6/09	15:52	SW5030B8260B
t-amyl-methyl ether (TAME) < 2	1,1-dichloropropene	< 2	2	ug/L	1	LMM		0900247	2/6/09	15:52	SW5030B8260B
carbon tetrachloride < 2 2 ug/L 1 LMM 0900247 2/6/09 15:52 SW5030B8260B 1,2-dichloroethane < 2	t-amyl-methyl ether (TAME)	< 2	2	ug/L	1	LMM		0900247	2/6/09	15:52	SW5030B8260B
1,2-dichloroethane < 2	carbon tetrachloride	< 2	2	ug/L	1	LMM		0900247	2/6/09	15:52	SW5030B8260B
benzene < 2	1,2-dichloroethane	< 2	2	ug/L	1	LMM		0900247	2/6/09	15:52	SW5030B8260B
trichloroethene < 2	benzene	< 2	2	ug/L	1	LMM		0900247	2/6/09	15:52	SW5030B8260B
1,2-dichloropropane < 2	trichloroethene	< 2	2	ug/L	1	LMM		0900247	2/6/09	15:52	SW5030B8260B
bromodichloromethane < 0.6	1,2-dichloropropane	< 2	2	ug/L	1	LMM		0900247	2/6/09	15:52	SW5030B8260B
1,4-dioxane < 50	bromodichloromethane	< 0.6	0.6	ug/L	1	LMM		0900247	2/6/09	15:52	SW5030B8260B
dibromomethane < 2	1,4-dioxane	< 50	50	ug/L	1	LMM		0900247	2/6/09	15:52	SW5030B8260B
4-methyl-2-pentanone (MIBK) < 10	dibromomethane	< 2	2	ug/L	1	LMM		0900247	2/6/09	15:52	SW5030B8260B
cis-1,3-dichloropropene < 2	4-methyl-2-pentanone (MIBK)	< 10	10	ug/L	1	LMM		0900247	2/6/09	15:52	SW5030B8260B
toluene < 2 2 ug/L 1 LMM 0900247 2/6/09 15:52 SW5030B8260B trans-1,3-dichloropropene < 2 2 ug/L 1 LMM 0900247 2/6/09 15:52 SW5030B8260B 2-hexanone < 10 10 ug/L 1 LMM 0900247 2/6/09 15:52 SW5030B8260B 1,1,2-trichloroethane < 2 2 ug/L 1 LMM 0900247 2/6/09 15:52 SW5030B8260B 1,3-dichloropropane < 2 2 ug/L 1 LMM 0900247 2/6/09 15:52 SW5030B8260B	cis-1,3-dichloropropene	< 2	2	ug/L	1	LMM		0900247	2/6/09	15:52	SW5030B8260B
trans-1,3-dichloropropene < 2	toluene	< 2	2	ug/L	1	LMM		0900247	2/6/09	15:52	SW5030B8260B
2-hexanone < 10	trans-1,3-dichloropropene	< 2	2	ug/L	1	LMM		0900247	2/6/09	15:52	SW5030B8260B
1,1,2-trichloroethane < 2	2-hexanone	< 10	10	ug/L	1	LMM		0900247	2/6/09	15:52	SW5030B8260B
1.3-dichloropropane < 2 2 ug/L 1 LMM 0900247 2/6/09 15:52 SW5030B8260B	1,1,2-trichloroethane	< 2	2	ug/L	1	LMM		0900247	2/6/09	15:52	SW5030B8260B
	1,3-dichloropropane	< 2	2	ug/L	1	LMM		0900247	2/6/09	15:52	SW5030B8260B
tetrachloroethene < 2 2 ug/L 1 LMM 0900247 2/6/09 15:52 SW5030B8260B	tetrachloroethene	< 2	2	ua/L	1	LMM		0900247	2/6/09	15:52	SW5030B8260B
dibromochloromethane < 2 2 ug/L 1 LMM 0900247 2/6/09 15:52 SW5030B8260B	dibromochloromethane	< 2	2	ua/L	1	LMM		0900247	2/6/09	15:52	SW5030B8260B
1,2-dibromoethane (EDB) < 2 2 ug/L 1 LMM 0900247 2/6/09 15:52 SW5030B8260B	1,2-dibromoethane (EDB)	< 2	2	ug/L	1	LMM		0900247	2/6/09	15:52	SW5030B8260B

Lab ID: 16048

Lab Number: 16048-004

Sample ID: MW-3

Matrix: Water

Sampled: 1/29/09 12:30		Quant		Instr Dil'n		Prep		Ana	alysis	
Parameter	Result	Limit	Units	Factor	Analyst	Date	Batch	Date	Time	Reference
chlorobenzene	< 2	2	ug/L	1	LMM		0900247	2/6/09	15:52	SW5030B8260B
1,1,1,2-tetrachloroethane	< 2	2	ug/L	1	LMM		0900247	2/6/09	15:5 2	SW5030B8260B
ethylbenzene	< 2	2	ug/L	1	LMM		0900247	2/6/09	15:5 2	SW5030B8260B
m&p-xylenes	< 2	2	ug/L	1	LMM		0900247	2/6/09	15:52	SW5030B8260B
o-xylene	< 2	2	ug/L	1	LMM		0900247	2/6/09	15:52	SW5030B8260B
styrene	< 2	2	ug/L	1	LMM		0900247	2/6/09	15:52	SW5030B8260B
bromoform	< 2	2	ug/L	1	LMM		0900247	2/6/09	15:52	SW5030B8260B
isopropylbenzene	< 2	2	ug/L	1	LMM		0900247	2/6/09	15:52	SW5030B8260B
1,1,2,2-tetrachloroethane	< 2	2	ug/L	1	LMM		0900247	2/6/09	15:52	SW5030B8260B
1,2,3-trichloropropane	< 2	2	ug/L	1	LMM		0900247	2/6/09	15:52	SW5030B8260B
n-propylbenzene	< 2	2	ug/L	1	LMM		0900247	2/6/09	15:52	SW5030B8260B
bromobenzene	< 2	2	ug/L	1	LMM		0900247	2/6/09	15:52	SW5030B8260B
1,3,5-trimethylbenzene	< 2	2	ug/L	1	LMM		0900247	2/6/09	15:52	SW5030B8260B
2-chlorotoluene	< 2	2	ug/L	1	LMM		0900247	2/6/09	15:52	SW5030B8260B
4-chlorotoluene	< 2	2	ug/L	1	LMM		0900247	2/6/09	15:52	SW5030B8260B
tert-butylbenzene	< 2	2	ug/L	1	LMM		0900247	2/6/09	15:52	SW5030B8260B
1,2,4-trimethylbenzene	< 2	2	ug/L	1	LMM		0900247	2/6/09	15:52	SW5030B8260B
sec-butylbenzene	< 2	2	ug/L	1	LMM		0900247	2/6/09	15:52	SW5030B8260B
1,3-dichlorobenzene	< 2	2	ug/L	1	LMM		0900247	2/6/09	15:52	SW5030B8260B
4-isopropyltoluene	< 2	2	ug/L	1	LMM		0900247	2/6/09	15:52	SW5030B8260B
1,4-dichlorobenzene	< 2	2	ug/L	1	LMM		0900247	2/6/09	15:52	SW5030B8260B
1,2-dichlorobenzene	< 2	2	ug/L	1	LMM		0900247	2/6/09	15:52	SW5030B8260B
n-butylbenzene	< 2	2	ug/L	1	LMM		0900247	2/6/09	15:52	SW5030B8260B
1,2-dibromo-3-chloropropane (DBCP)	< 2	2	ug/L	1	LMM		0900247	2/6/09	15:52	SW5030B8260B
1,2,4-trichlorobenzene	< 2	2	ug/L	1	LMM		0900247	2/6/09	15:52	SW5030B8260B
1,3,5-trichlorobenzene	< 2	2	ug/L	1	LMM		0900247	2/6/09	15:52	SW5030B8260B
hexachlorobutadiene	< 0.5	0.5	ug/L	1	LMM		0900247	2/6/09	15:52	SW5030B8260B
naphthalene	< 5	5	ug/L	1	LMM		0900247	2/6/09	15:52	SW5030B8260B
1,2,3-trichlorobenzene	< 2	2	ug/L	1	LMM		0900247	2/6/09	15:52	SW5030B8260B
Surrogate Recovery		Limits								
dibromofluoromethane SUR	97	78-114	%	1	LMM		0900247	2/6/09	15:52	SW5030B8260B
toluene-D8 SUR	96	88-110	%	1	LMM		0900247	2/6/09	15:52	SW5030B8260B
4-bromofluorobenzene SUR	91	86-115	%	1	LMM		0900247	2/6/09	15:52	SW5030B8260B

ò

Lab ID: 16048

Lab Number: 16048-005

Sample ID: MW-4

Sampled: 1/29/09 12:10	Decult	Quant	11	Instr Dil'n	Analyst	Prep	Patab	Ana	alysis Timo	Defenses
Parameter	Result	LIMIC	Units	Factor	Analyst	Date	Datch	Date	1 ime	Reference
dichlorodifluoromethane	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:32	SW5030B8260B
chioromethane	< 2	2	ug/L	1			0900236	2/5/09	6:32	SW5030B8260B
vinyi chloride	< 2	2	ug/L	1			0900236	2/5/09	6:32	SW5030B8260B
bromomethane	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:32	SW5030B8260B
chloroethane	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:32	SW5030B8260B
trichlorofluoromethane	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:32	SW5030B8260B
diethyl ether	< 5	5	ug/L	1	LMM		0900236	2/5/09	6:32	SW5030B8260B
acetone	< 50	50	ug/L	1	LMM		0900236	2/5/09	6:32	SW5030B8260B
1,1-dichloroethene	< 1	1	ug/L	1	LMM		0900236	2/5/09	6:32	SW5030B8260B
methylene chloride	< 5	5	ug/L	1	LMM		0900236	2/5/09	6:32	SW5030B8260B
carbon disulfide	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:32	SW5030B8260B
methyl t-butyl ether (MTBE)	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:32	SW5030B8260B
trans-1,2-dichloroethene	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:32	SW5030B8260B
isopropyl ether (DIPE)	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:32	SW5030B8260B
ethyl t-butyl ether (ETBE)	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:32	SW5030B8260B
1,1-dichloroethane	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:32	SW5030B8260B
t-butanol (TBA)	< 30	30	ug/L	1	LMM		0900236	2/5/09	6:32	SW5030B8260B
2-butanone (MEK)	< 10	10	ug/L	1	LMM		0900236	2/5/09	6:32	SW5030B8260B
2,2-dichloropropane	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:32	SW5030B8260B
cis-1,2-dichloroethene	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:32	SW5030B8260B
chloroform	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:32	SW5030B8260B
bromochloromethane	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:32	SW5030B8260B
tetrahydrofuran (THF)	< 10	10	ug/L	1	LMM		0900236	2/5/09	6:32	SW5030B8260B
1,1,1-trichloroethane	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:32	SW5030B8260B
1,1-dichloropropene	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:32	SW5030B8260B
t-amyl-methyl ether (TAME)	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:32	SW5030B8260B
carbon tetrachloride	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:32	SW5030B8260B
1,2-dichloroethane	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:32	SW5030B8260B
benzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:32	SW5030B8260B
trichloroethene	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:32	SW5030B8260B
1,2-dichloropropane	< 2	2	ua/L	1	LMM		0900236	2/5/09	6:32	SW5030B8260B
bromodichloromethane	< 0.6	0.6	ug/L	1	LMM		0900236	2/5/09	6:32	SW5030B8260B
1,4-dioxane	< 50	50	ua/L	1	LMM		0900236	2/5/09	6:32	SW5030B8260B
dibromomethane	< 2	2	ua/L	1	LMM		0900236	2/5/09	6:32	SW5030B8260B
4-methyl-2-pentanone (MIBK)	< 10	10	ua/L	1	LMM		0900236	2/5/09	6:32	SW5030B8260B
cis-1.3-dichloropropene	< 2	2	ua/L	1	1 MM		0900236	2/5/09	6:32	SW5030B8260B
toluene	< 2	2	9/= Ua/i	1	LMM		0900236	2/5/09	6:32	SW5030B8260B
trans-1 3-dichloropropene	< 2	2	ug/L	1	L MM		0900236	2/5/09	6.32	SW5030B8260B
2-hexanone	< 10	10	ug/E	1	LMM		0000200	2/5/09	6.32	SW5030B8260B
1 1 2-trichloroethane	< 2	2	ug/L	1	I MANA		0000200	2/5/00	6.32	SW5030B8260B
1.3-dichloropropane	< 2	2	ug/L	1			0000200	2/5/00	6.32	SW/5030B8260B
tetrachloroethene	 2 0	2 2	ug/L	1			0000200	2/5/00	0.0Z	SWSOODD200D
dibromochloromethane	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	2	ugre ugre	1			0000200	2/5/00	6.32 6.32	SW/5020002000
1.2-dibromoethane (EDB)	- 2 0	2	ugre ua/l	1	E NANA		0000200	2/5/00	0.52	SWEDSADOSOD
r,z-ubromoethane (EDD)	× 2	2	ug/L	I			0800230	213/09	0.32	3W0030B0200B

Lab ID: 16048

Lab Number: 16048-005

Sample ID: MW-4

Sampled: 1/29/09 12:10		Quant		Instr Dil'n		Prep		Ana	lysis	
Parameter	Result	Limit	Units	Factor	Analyst	Date	Batch	Date	Time	Reference
chlorobenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:32	SW5030B8260B
1,1,1,2-tetrachloroethane	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:32	SW5030B8260B
ethylbenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:32	SW5030B8260B
m&p-xylenes	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:32	SW5030B8260B
o-xylene	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:32	SW5030B8260B
styrene	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:32	SW5030B8260B
bromoform	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:32	SW5030B8260B
isopropylbenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:32	SW5030B8260B
1,1,2,2-tetrachloroethane	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:32	SW5030B8260B
1,2,3-trichloropropane	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:32	SW5030B8260B
n-propylbenzene	< 2	2	ug/L	1	LMM		0900236	2 /5/09	6:32	SW5030B8260B
bromobenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:32	SW5030B8260B
1,3,5-trimethylbenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:32	SW5030B8260B
2-chlorotoluene	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:32	SW5030B8260B
4-chlorotoluene	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:32	SW5030B8260B
tert-butylbenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:32	SW5030B8260B
1,2,4-trimethylbenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:32	SW5030B8260B
sec-butylbenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:32	SW5030B8260B
1,3-dichlorobenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:32	SW5030B8260B
4-isopropyltoluene	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:32	SW5030B8260B
1,4-dichlorobenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:32	SW5030B8260B
1,2-dichlorobenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:32	SW5030B8260B
n-butylbenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:32	SW5030B8260B
1,2-dibromo-3-chloropropane (DBCP)	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:32	SW5030B8260B
1,2,4-trichlorobenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:32	SW5030B8260B
1,3,5-trichlorobenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:32	SW5030B8260B
hexachlorobutadiene	< 0.5	0.5	ug/L	1	LMM		0900236	2/5/09	6:32	SW5030B8260B
naphthalene	< 5	5	ug/L	1	LMM		0900236	2/5/09	6:32	SW5030B8260B
1,2,3-trichlorobenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	6:32	SW5030B8260B
Surrogate Recovery		Limits								
dibromofluoromethane SUR	102	78-114	%	1	LMM		0900236	2/5/09	6:32	SW5030B8260B
toluene-D8 SUR	96	88-110	%	1	LMM		0900236	2/5/09	6:32	SW5030B8260B
4-bromofluorobenzene SUR	87	86-115	%	1	LMM		0900236	2/5/09	6:32	SW5030B8260B

Lab ID: 16048

Lab Number: 16048-006

Sample ID: Equip Blank

Matrix: Water

Sampled: 1/29/09 11:00		Quant		Instr Dil'n		Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst	Date	Batch	Date	Time	Reference
dichlorodifluoromethane	< 2	2	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
chloromethane	< 2	2	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
vinyl chloride	< 2	2	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
bromomethane	< 2	2	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
chloroethane	< 2	2	ug/L	1	LMM		0900236	2/5/09	4:3 2	SW5030B8260B
trichlorofluoromethane	< 2	2	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
diethyl ether	< 5	5	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
acetone	< 50	50	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
1,1-dichloroethene	< 1	1	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
methylene chloride	< 5	5	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
carbon disulfide	< 2	2	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
methyl t-butyl ether (MTBE)	< 2	2	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
trans-1,2-dichloroethene	< 2	2	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
isopropyl ether (DIPE)	< 2	2	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
ethyl t-butyl ether (ETBE)	< 2	2	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
1,1-dichloroethane	< 2	2	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
t-butanol (TBA)	< 30	30	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
2-butanone (MEK)	< 10	10	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
2,2-dichloropropane	< 2	2	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
cis-1,2-dichloroethene	< 2	2	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
chloroform	< 2	2	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
bromochloromethane	< 2	2	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
tetrahydrofuran (THF)	< 10	10	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
1,1,1-trichloroethane	< 2	2	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
1,1-dichloropropene	< 2	2	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
t-amyl-methyl ether (TAME)	< 2	2	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
carbon tetrachloride	< 2	2	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
1,2-dichloroethane	< 2	2	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
benzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
trichloroethene	< 2	2	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
1,2-dichloropropane	< 2	2	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
bromodichloromethane	< 0.6	0.6	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
1,4-dioxane	< 50	50	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
dibromomethane	< 2	2	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
4-methyl-2-pentanone (MIBK)	< 10	10	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
cis-1,3-dichloropropene	< 2	2	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
toluene	< 2	2	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
trans-1,3-dichloropropene	< 2	2	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
2-hexanone	< 10	10	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
1,1,2-trichloroethane	< 2	2	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
1,3-dichloropropane	< 2	2	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
tetrachloroethene	< 2	2	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
dibromochloromethane	< 2	2	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
1,2-dibromoethane (EDB)	< 2	2	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B

4

Lab ID: 16048

Lab Number: 16048-006

Sample ID: Equip Blank

Sampled: 1/29/09 11:00		Quant		Instr Dil'n		Prep		Ana	alysis	
Parameter	Result	Limit	Units	Factor	Analyst	Date	Batch	Date	Time	Reference
chlorobenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
1,1,1,2-tetrachloroethane	< 2	2	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
ethylbenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
m&p-xylenes	< 2	2	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
o-xylene	< 2	2	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
styrene	< 2	2	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
bromoform	< 2	2	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
isopropylbenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
1,1,2,2-tetrachloroethane	< 2	2	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
1,2,3-trichloropropane	< 2	2	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
n-propylbenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
bromobenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
1,3,5-trimethylbenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
2-chlorotoluene	< 2	2	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
4-chlorotoluene	< 2	2	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
tert-butylbenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
1,2,4-trimethylbenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
sec-butylbenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
1,3-dichlorobenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
4-isopropyltoluene	< 2	2	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
1,4-dichlorobenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
1,2-dichlorobenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
n-butylbenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
1,2-dibromo-3-chloropropane (DBCP)	< 2	2	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
1,2,4-trichlorobenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
1,3,5-trichlorobenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
hexachlorobutadiene	< 0.5	0.5	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
naphthalene	< 5	5	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
1,2,3-trichlorobenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
Surrogate Recovery		Limits								
dibromofluoromethane SUR	94	78-114	%	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
toluene-D8 SUR	96	88-110	%	1	LMM		0900236	2/5/09	4:32	SW5030B8260B
4-bromofluorobenzene SUR	90	86-115	%	1	LMM		0900236	2/5/09	4:32	SW5030B8260B

Lab ID: 16048

Lab Number: 16048-007

Sample ID: Trip Blank

Sampled: 1/29/09		Quant		Instr Dil'n		Prep		Ana	lysis	
Parameter	Result	Limit	Units	Factor	Analyst	Date	Batch	Date	Time	Reference
dichlorodifluoromethane	< 2	2	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
chloromethane	< 2	2	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
vinyl chloride	< 2	2	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
bromomethane	< 2	2	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
chloroethane	< 2	2	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
trichlorofluoromethane	< 2	2	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
diethyl ether	< 5	5	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
acetone	< 50	50	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
1,1-dichloroethene	< 1	1	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
methylene chloride	< 5	5	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
carbon disulfide	< 2	2	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
methyl t-butyl ether (MTBE)	< 2	2	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
trans-1,2-dichloroethene	< 2	2	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
isopropyl ether (DIPE)	< 2	2	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
ethyl t-butyl ether (ETBE)	< 2	2	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
1,1-dichloroethane	< 2	2	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
t-butanol (TBA)	< 30	30	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
2-butanone (MEK)	< 10	10	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
2,2-dichloropropane	< 2	2	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
cis-1,2-dichloroethene	< 2	2	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
chloroform	< 2	2	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
bromochloromethane	< 2	2	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
tetrahydrofuran (THF)	< 10	10	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
1,1,1-trichloroethane	< 2	2	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
1,1-dichloropropene	< 2	2	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
t-amyl-methyl ether (TAME)	< 2	2	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
carbon tetrachloride	< 2	2	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
1,2-dichloroethane	< 2	2	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
benzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
trichloroethene	< 2	2	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
1,2-dichloropropane	< 2	2	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
bromodichloromethane	< 0.6	0.6	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
1,4-dioxane	< 50	50	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
dibromomethane	< 2	2	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
4-methyl-2-pentanone (MIBK)	< 10	10	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
cis-1,3-dichloropropene	< 2	2	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
toluene	< 2	2	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
trans-1,3-dichloropropene	< 2	2	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
2-hexanone	< 10	10	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
1,1,2-trichloroethane	< 2	2	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
1,3-dichloropropane	< 2	2	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
tetrachloroethene	< 2	2	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
dibromochloromethane	< 2	2	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
1,2-dibromoethane (EDB)	< 2	2	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B

Lab ID: 16048

Lab Number: 16048-007

Sample ID: Trip Blank

Sampled: 1/29/09		Quant		instr Dil'n		Prep		Ana	alysis	
Parameter	Result	Limit	Units	Factor	Analyst	Date	Batch	Date	Time	Reference
chlorobenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
1,1,1,2-tetrachloroethane	< 2	2	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
ethylbenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
m&p-xylenes	< 2	2	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
o-xylene	< 2	2	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
styrene	< 2	2	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
bromoform	< 2	2	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
isopropylbenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
1,1,2,2-tetrachloroethane	< 2	2	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
1,2,3-trichloropropane	< 2	2	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
n-propylbenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
bromobenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
1,3,5-trimethylbenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
2-chlorotoluene	< 2	2	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
4-chlorotoluene	< 2	2	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
tert-butylbenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
1,2,4-trimethylbenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
sec-butylbenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
1,3-dichlorobenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
4-isopropyltoluene	< 2	2	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
1,4-dichlorobenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
1,2-dichlorobenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
n-butylbenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
1,2-dibromo-3-chloropropane (DBCP)	< 2	2	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
1,2,4-trichlorobenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
1,3,5-trichlorobenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
hexachlorobutadiene	< 0.5	0.5	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
naphthalene	< 5	5	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
1,2,3-trichlorobenzene	< 2	2	ug/L	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
Surrogate Recovery		Limits								
dibromofluoromethane SUR	96	78-114	%	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
toluene-D8 SUR	97	88-110	%	1	LMM		0900236	2/5/09	3:02	SW5030B8260B
4-bromofluorobenzene SUR	90	86-115	%	1	LMM		0900236	2/5/09	3:02	SW5030B8260B

Lab ID: 16048

0

Lab Number: 16048-001

Sample ID: MW-1

Sampled: 1/29/09 13:40			instr Dil'n Prep			ep Analysis				
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference	
naphthalene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	19:47	SW3510B8270C	
2-methylnaphthalene	< 0.5	0.5	ug/Ľ	1	AJD 2/4/09	1976	2/4/09	19:47	SW3510B8270C	
acenaphthylene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	19:47	SW3510B8270C	
acenaphthene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	19:47	SW3510B8270C	
dibenzofuran	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	19:47	SW3510B8270C	
fluorene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	19:47	SW3510B8270C	
phenanthrene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	19:47	SW3510B8270C	
anthracene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	19:47	SW3510B8270C	
fluoranthene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	19:47	SW3510B8270C	
pyrene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	19:47	SW3510B8270C	
benzo(a)anthracene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	19:47	SW3510B8270C	
chrysene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	19:47	SW3510B8270C	
benzo(b)fluoranthene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	19:47	SW3510B8270C	
benzo(k)fluoranthene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	19:47	SW3510B8270C	
benzo(a)pyrene	< 0.2	0.2	ug/L	1	AJD 2/4/09	1976	2/4/09	19:47	SW3510B8270C	
indeno(1,2,3-cd)pyrene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	19:47	SW3510B8270C	
dibenzo(a,h)anthracene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	19:47	SW3510B8270C	
benzo(g,h,i)perylene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	19:47	SW3510B8270C	
Surrogate Recovery		Limits								
2-fluorobiphenyl SUR	64	43-116	%	1	AJD 2/4/09	1976	2/4/09	19:47	SW3510B8270C	
o-terphenyl SUR	70	33-141	%	1	AJD 2/4/09	1976	2/4/09	19:47	SW3510B8270C	

Lab ID: 16048

Lab Number: 16048-002

Sample ID: MW-2

Sampled: 1/29/09 11:40	1:40		Quant Instr Dil'n				Ana	lysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
naphthalene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	20:25	SW3510B8270C
2-methylnaphthalene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	20:25	SW3510B8270C
acenaphthylene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	20:25	SW3510B8270C
acenaphthene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	20:25	SW3510B8270C
dibenzofuran	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	20:25	SW3510B8270C
fluorene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	20:25	SW3510B8270C
phenanthrene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	20:25	SW3510B8270C
anthracene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	20:25	SW3510B8270C
fluoranthene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	20:25	SW3510B8270C
pyrene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	20:25	SW3510B8270C
benzo(a)anthracene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	20:25	SW3510B8270C
chrysene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	20:25	SW3510B8270C
benzo(b)fluoranthene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	20:25	SW3510B8270C
benzo(k)fluoranthene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	20:25	SW3510B8270C
benzo(a)pyrene	< 0.2	0.2	ug/L	1	AJD 2/4/09	1976	2/4/09	20:25	SW3510B8270C
indeno(1,2,3-cd)pyrene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	20:25	SW3510B8270C
dibenzo(a,h)anthracene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	20:25	SW3510B8270C
benzo(g,h,i)perylene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	20:25	SW3510B8270C
Surrogate Recovery		Limits							
2-fluorobiphenyl SUR	65	43-116	%	1	AJD 2/4/09	1976	2/4/09	20:25	SW3510B8270C
o-terphenyl SUR	76	33-141	%	1	AJD 2/4/09	1976	2/4/09	20:25	SW3510B8270C

Lab ID: 16048

Lab Number: 16048-003

Sample ID: MW-3 dup

Matrix: Water

Sampled: 1/29/09 12:25	Quant Instr			Instr Dil'n	Prep		Ana		
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
naphthalene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	21:02	SW3510B8270C
2-methylnaphthalene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	21:02	SW3510B8270C
acenaphthylene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	21:02	SW3510B8270C
acenaphthene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	21:02	SW3510B8270C
dibenzofuran	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	21:02	SW3510B8270C
fluorene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	21:02	SW3510B8270C
phenanthrene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	21:02	SW3510B8270C
anthracene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	21:02	SW3510B8270C
fluoranthene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/ 4/09	21:02	SW3510B8270C
pyrene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	21:02	SW3510B8270C
benzo(a)anthracene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	21:02	SW3510B8270C
chrysene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	21:0 2	SW3510B8270C
benzo(b)fluoranthene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	21:02	SW3510B8270C
benzo(k)fluoranthene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	21:02	SW3510B8270C
benzo(a)pyrene	< 0.2	0.2	ug/L	1	AJD 2/4/09	1976	2/4/09	21:02	SW3510B8270C
indeno(1,2,3-cd)pyrene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	21:02	SW3510B8270C
dibenzo(a,h)anthracene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	21:02	SW3510B8270C
benzo(g,h,i)perylene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	21:02	SW3510B8270C
Surrogate Recovery		Limits							
2-fluorobiphenyl SUR	63	43-116	%	1	AJD 2/4/09	1976	2/4/09	21:02	SW3510B8270C
o-terphenyl SUR	75	33-141	%	1	AJD 2/4/09	1976	2/4/09	21:02	SW3510B8270C

•

Lab ID: 16048

Lab Number: 16048-004

Sample ID: MW-3

....

Sampled: 1/29/09 12:30		Quant			Instr Dil'n Prep			p Analysis				
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference			
naphthalene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	21:40	SW3510B8270C			
2-methylnaphthalene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	21:40	SW3510B8270C			
acenaphthylene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	21:40	SW3510B8270C			
acenaphthene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	21:40	SW3510B8270C			
dibenzofuran	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	21:40	SW3510B8270C			
fluorene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	2.1:40	SW3510B8270C			
phenanthrene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	21:40	SW3510B8270C			
anthracene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	21:40	SW3510B8270C			
fluoranthene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	21:40	SW3510B8270C			
pyrene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	21:40	SW3510B8270C			
benzo(a)anthracene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	21:40	SW3510B8270C			
chrysene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	21:40	SW3510B8270C			
benzo(b)fluoranthene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	21:40	SW3510B8270C			
benzo(k)fluoranthene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	21:40	SW3510B8270C			
benzo(a)pyrene	< 0.2	0.2	ug/L	1	AJD 2/4/09	1976	2/4/09	21:40	SW3510B8270C			
indeno(1,2,3-cd)pyrene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	21:40	SW3510B8270C			
dibenzo(a,h)anthracene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	21:40	SW3510B8270C			
benzo(g,h,i)perylene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	21:40	SW3510B8270C			
Surrogate Recovery		Limits										
2-fluorobiphenyl SUR	63	43-116	%	1	AJD 2/4/09	1976	2/4/09	21:40	SW3510B8270C			
o-terphenyl SUR	76	33-141	%	1	AJD 2/4/09	1976	2/4/09	21:40	SW3510B8270C			

Lab ID: 16048

Lab Number: 16048-005

Sample ID: MW-4

Sampled: 1/29/09 12:10		Quant		Instr Dil'n	Prep	Prep Analysis					
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference		
naphthalene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	22:17	SW3510B8270C		
2-methylnaphthalene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	22:17	SW3510B8270C		
acenaphthylene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	22:17	SW3510B8270C		
acenaphthene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	22:17	SW3510B8270C		
dibenzofuran	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	22 :17	SW3510B8270C		
fluorene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	22:17	SW3510B8270C		
phenanthrene	1.0	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	22:17	SW3510B8270C		
anthracene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	22:17	SW3510B8270C		
fluoranthene	1.6	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	22:17	SW3510B8270C		
pyrene	1.9	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	22:17	SW3510B8270C		
benzo(a)anthracene	0.8	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	22:17	SW3510B8270C		
chrysene	1.0	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	22:17	SW3510B8270C		
benzo(b)fluoranthene	0.8	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	22:17	SW3510B8270C		
benzo(k)fluoranthene	0.7	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	22:17	SW3510B8270C		
benzo(a)pyrene	0.9	0.2	ug/L	1	AJD 2/4/09	1976	2/4/09	22:17	SW3510B8270C		
indeno(1,2,3-cd)pyrene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	22:17	SW3510B8270C		
dibenzo(a,h)anthracene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	22:17	SW3510B8270C		
benzo(g,h,i)perylene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	22:17	SW3510B8270C		
Surrogate Recovery		Limits									
2-fluorobiphenyl SUR	56	43-116	%	1	AJD 2/4/09	1976	2/4/09	22:17	SW3510B8270C		
o-terphenyl SUR	59	33-141	%	1	AJD 2/4/09	1976	2/4/09	22:17	SW3510B8270C		

Lab ID: 16048

Lab Number: 16048-006

Sample ID: Equip Blank

Matrix: Water

Sampled: 1/29/09 11:00		Quant		Instr Dil'n	Prep		Ana	alysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
naphthalene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	22:55	SW3510B8270C
2-methylnaphthalene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	22:55	SW3510B8270C
acenaphthylene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	22:55	SW3510B8270C
acenaphthene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	22:55	SW3510B8270C
dibenzofuran	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	22:55	SW3510B8270C
fluorene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	22:55	SW3510B8270C
phenanthrene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	22:55	SW3510B8270C
anthracene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	22:55	SW3510B8270C
fluoranthene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	22:55	SW3510B8270C
pyrene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	22:55	SW3510B8270C
benzo(a)anthracene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	22:55	SW3510B8270C
chrysene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	22:55	SW3510B8270C
benzo(b)fluoranthene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	22:55	SW3510B8270C
benzo(k)fluoranthene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	22:55	SW3510B8270C
benzo(a)pyrene	< 0.2	0.2	ug/L	1	AJD 2/4/09	1976	2/4/09	22:55	SW3510B8270C
indeno(1,2,3-cd)pyrene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	22:55	SW3510B8270C
dibenzo(a,h)anthracene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	22:55	SW3510B8270C
benzo(g,h,i)perylene	< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	22:55	SW3510B8270C
Surrŏgate Recovery		Limits							
2-fluorobiphenyl SUR	69	43-116	%	1	AJD 2/4/09	1976	2/4/09	22:55	SW3510B8270C
o-terphenyl SUR	77	33-141	%	1	AJD 2/4/09	1976	2/4/09	22:55	SW3510B8270C

.

Lab ID: 16048

Lab Number: 16048-001

Sample ID: MW-1

Matrix: Water

Sampled: 1/29/09 13:40		Quant		instr Dil'n		Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst	Date	Batch	Date	Time	Reference
Arsenic	< 0.008	0.008	mg/L	1	BJS		0900226	2/3/09	15:45	SW3005A6010B
Barium	< 0.05	0.05	mg/L	1	BJS		0900226	2/3/09	15:45	SW3005A6010B
Cadmium	< 0.005	0.005	mg/L	1	BJS		0900226	2/3/09	15:45	SW3005A6010B
Chromium	< 0.05	0.05	mg/L	1	BJS		0900226	2/3/09	15:45	SW3005A6010B
Lead	< 0.008	0.008	mg/L	1	BJS		0900226	2/3/09	15:45	SW3005A6010B
Mercury	< 0.0009	0.0009	mg/L	1	BJS		0900199	1/30/09		SW7470A
Selenium	< 0.05	0.05	mg/L	1	BJS		0900226	2/3/09	15:45	SW3005A6010B
Silver	< 0.007	0.007	mg/L	1	BJS		0900226	2/3/09	15:45	SW3005A6010B
1 I Novel 40040.000										

Lab Number: 16048-002

Sample ID: MW-2

Matrix: Water

Sampled: 1/29/09 11:40		Quant		Instr Dil'n		Prep		Ana	lysis	
Parameter	Result	Limit	Units	Factor	Analyst	Date	Batch	Date	Time	Reference
Arsenic	< 0.008	0.008	mg/L	1	BJS		0900226	2/3/09	15:49	SW3005A6010B
Barium	< 0.05	0.05	mg/L	1	BJS		0900226	2/3/09	15:49	SW3005A6010B
Cadmium	< 0.005	0.005	mg/L	1	BJS		0900226	2/3/09	15:49	SW3005A6010B
Chromium	< 0.05	0.05	mg/L	1	BJS		0900226	2/3/09	15:49	SW3005A6010B
Lead	< 0.008	0.008	mg/L	1	BJS		0900226	2/3/09	15:49	SW3005A6010B
Mercury	< 0.0009	0.0009	mg/L	1	BJS		0900199	1/30/09		SW7470A
Selenium	< 0.05	0.05	mg/L	1	BJS		0900226	2/3/09	15:49	SW3005A6010B
Siver	< 0.007	0.007	mg/L	1	BJS		0900226	2/3/09	15:49	SW3005A6010B

Lab Number: 16048-003

Sample ID: MW-3 dup

Sampled: 1/29/09 12:25	Quant Instr D					Prep	o Analysis					
Parameter	Result	Limit	Units	Factor	Analyst	Date	Batch	Date	Time	Reference		
Arsenic	< 0.008	0.008	mg/L	1	BJS		0900226	2/3/09	15:56	SW3005A6010B		
Barium	< 0.05	0.05	mg/L	1	BJS		0900226	2/3/09	15:56	SW3005A6010B		
Cadmium	< 0.005	0.005	mg/L	1	BJS		0900226	2/3/09	15:56	SW3005A6010B		
Chromium	< 0.05	0.05	mg/L	1	BJS		0900226	2/3/09	15:56	SW3005A6010B		
Lead	< 0.008	0.008	mg/L	1	BJS		0900226	2/3/09	15:56	SW3005A6010B		
Mercury	< 0.0009	0.0009	mg/L	1	BJS		0900199	1/30/09		SW7470A		
Selenium	< 0.05	0.05	mg/L	1	BJS		0900226	2/3/09	15:56	SW3005A6010B		
Silver	< 0.007	0.007	mg/L	1	BJS		0900226	2/3/09	15:56	SW3005A6010B		

Lab ID: 16048

Lab Number: 16048-004

Sample ID: MW-3

Matrix: Water

Sampled: 1/29/09 12:30)	Quant	I	nstr Dil'n		Prep	Analysis			
Parameter	Result	Limit	Units	Factor	Analyst	Date	Batch	Date	Time	Reference
Arsenic	< 0.008	0.008	mg/L	1	BJS		0900226	2/3/09	15:59	SW3005A6010B
Barium	< 0.05	0.05	mg/L	1	BJS		0900226	2/3/09	15:59	SW3005A6010B
Cadmium	< 0.005	0.005	mg/L	1	BJS		0900226	2/3/09	15:59	SW3005A6010B
Chromium	< 0.05	0.05	mg/L	1	BJS		0900226	2/3/09	15:59	SW3005A6010B
Lead	< 0.008	0.008	mg/L	1	BJS		0900226	2/3/09	15:59	SW3005A6010B
Mercury	< 0.0009	0.0009	mg/L	1	BJS		0900199	1/30/09		SW7470A
Selenium	< 0.05	0.05	mg/L	1	BJS		0900226	2/3/09	15:59	SW3005A6010B
Silver	< 0.007	0.007	mg/L	1	BJS		0900226	2/3/09	15:59	SW3005A6010B

Lab Number: 16048-005

Sample ID: MW-4

Matrix: Water

Sampled: 1/29/09 12:10		Quant Instr Dil'n				Prep				
Parameter	Result	Limit	Units	Factor	Analyst	Date	Batch	Date	Time	Reference
Arsenic	< 0.008	0.008	mg/L	1	BJS		0900226	2/3/09	16:19	SW3005A6010B
Barium	< 0.05	0.05	mg/L	1	BJS		0900226	2/3/09	16:19	SW3005A6010B
Cadmium	< 0.005	0.005	mg/L	1	BJS		0900226	2/3/09	16:19	SW3005A6010B
Chromium	< 0.05	0.05	mg/L	1	BJS		0900226	2/3/09	16:19	SW3005A6010B
Lead	< 0.008	0.008	mg/L	1	BJS		0900226	2/3/09	16:19	SW3005A6010B
Mercury	< 0.0009	0.0009	mg/L	1	BJS		0900199	1/30/09		SW7470A
Selenium	< 0.05	0.05	mg/L	1	BJS		0900226	2/3/09	16:19	SW3005A6010B
Silver	< 0.007	0.007	mg/L	1	BJS		0900226	2/3/09	16:19	SW3005A6010B

Lab Number: 16048-006

Sample ID: Equip Blank

Sampled: 1/29/09	11:00	Quant	I	nstr Dil'n		Prep		Analy		
Parameter	Result	Limit	Units	Factor	Analyst	Date	Batch	Date	Time	Reference
Arsenic	< 0.008	800.0	mg/L	1	BJS		0900226	2/3/09	16:23	SW3005A6010B
Barium	< 0.05	0.05	mg/L	1	BJS		0900226	2/3/09	16:23	SW3005A6010B
Cadmium	< 0.005	0.005	mg/L	1	BJS		0900226	2/3/09	16:23	SW3005A6010B
Chromium	< 0.05	0.05	mg/L	1	BJS		0900226	2/3/09	16:23	SW3005A6010B
Lead	< 0.008	0.008	mg/L	1	BJS		0900226	2/3/09	16:23	SW3005A6010B
Mercury	< 0.0009	0.0009	mg/L	1	BJS		0900199	1/30/09		SW7470A
Selenium	< 0.05	0.05	mg/L	1	BJS		0900226	2/3/09	16:23	SW3005A6010B
S'Iver	< 0.007	0.007	mg/L	1	BJS		0900226	2/3/09	16:23	SW3005A6010B

Quality Control Report

Case Narrative Lab # 16048

Sample Receiving and Chain of Custody Discrepancies

Samples were received in acceptable condition, at 2 degrees C, on ice, and in accordance with sample handling, preservation and integrity guidelines.

MW-3 and MW-3 DUP did not have sufficient volume to perform the mercury analysis. At the customer's request, sample volume was taken from the PAH sample bottle, filtered at the lab, and preserved for mercury analysis.

Calibration

No exceptions noted.

Method Blank

No exceptions noted.

Surrogate Recoveries

No exceptions noted.

Laboratory Control Sample Results

VOC: The LCS/LCSD0900236 did not meet the acceptance criteria for 2,2-dichloropropane. This compound is known to be problematic in the method. Refer to the QC association table to determine which samples were effected.

Matrix Spike/Matrix Spike Duplicate/Duplicate Results

Not requested for this project.

Other

QC: A sample association table is provided for cross reference of sample and lab IDs and associated quality control samples.

Reporting Limits: Dilutions performed during the analysis are noted on the result pages.

No other exceptions noted.

- QC Association Table -

Analysis	QC Number	Field ID	Lab ID
PAHs in water by 8270C SW3510B8270C			
	1976	MW-1	16048-001
		MW-2	16048-002
		MW-3 dup	16048-003
		MW-3	16048-004
		MW-4	16048-005
		Equip Blank	16048-006
VOCs in water by 8260B SW5030B8260B			
	0900236	MW-1	16048-001
		MW-2	16048-002
		MW-3 dup	16048-003
		MW-4	16048-005
		Equip Blank	16048-006
		Trip Blank	16048-007
VOCs in water by 8260B SW5030B8260B			
	0900247	MW-3	16048-004

- QC Report -

Method	QC ID	Parameter	Associated Sample	Res	ult Units	Amt Added	%R	Limit	RPD	RPD Limit
SW5030B8260B	BLK0900236	dichlorodifluoromethane		<	2 ug/L					
		chloromethane		<	2 ug/L					
		vinyl chloride		<	2 ug/L					
		bromomethane		<	2 ug/L					
		chloroethane		<	2 ug/L					
		trichlorofluoromethane		<	2 ug/L					
		diethyl ether		<	10 ug/L					
		acetone		<	10 ug/L					
		1,1-dichloroethene		<	1 ug/L					
		methylene chloride		<	5 ug/L					
		carbon disulfide		<	2 ug/L					
		methyl t-butyl ether (MTBE)	<	2 ug/L					
		trans-1,2-dichloroethene		<	2 ug/L					
		isopropyl ether (DIPE)		<	2 ug/L					
		ethyl t-butyl ether (ETBE)		<	2 ug/L					
		1,1-dichloroethane		<	2 ug/L					
		t-butanol (TBA)		<	40 ug/L					
		2-butanone (MEK)		<	10 ug/L					
		2,2-dichloropropane		<	2 ug/L					
		cis-1,2-dichloroethene		<	2 ug/L					
		chloroform		<	2 ug/L					
		bromochloromethane		<	2 ug/L					
		tetrahydrofuran (THF)		<	10 ug/L					
		1,1,1-trichloroethane		<	2 ug/L					
		1,1-dichloropropene		<	2 ug/L.					
		t-amyl-methyl ether (TAME)	<	2 ug/L					
		carbon tetrachloride		<	2 ug/L					
		1,2-dichloroethane		<	2 ug/L					
		benzene		<	2 ug/L					
		trichloroethene		<	2 ug/L					
		1,2-dichloropropane		<	2 ug/L					
		bromodichloromethane		<	2 ug/L					
		1,4-dioxane		<	50 ug/L					
		dipromometnane		2	2 ug/L 10 ug/l					
		4-methyl-z-pentanone (with	snj	>	10 ug/∟ 2 ug/l					
		tolyono		2	∠ug/∟ 2ug/L					
		trans 1.3 dichloropropene		2	∠ ug/⊑ 2 ug/L					
		2-hexanone		$\overline{\langle}$	-∠ug/⊏ 10 ug/l					
		1 1 2-trichloroethane		è	2 µa/l					
		1.3-dichloropropane		<	2 ug/L 2 ug/L					
		tetrachloroethene		<	2 ug/L					
		dibromochloromethane		<	2 ug/l					
		1.2-dibromoethane (EDB)		<	2 uo/L					
		chlorobenzene		<	2 uo/L					
		1.1.1.2-tetrachloroethane		<	2 ua/L					
		ethylbenzene		<	2 ua/L					
		m&p-xvlenes		<	2 ua/L					
		o-xylene		<	2 ug/L					
		styrene		<	2 ug/L					
		bromoform		<	2 ua/L					

.

÷

Method	QC ID	Parameter	Associated Sample	Resu	lit Units	Amt Added	%R	Limit	RPD	RPD Limit
SW5030B8260B	BLK0900236	isopropylbenzene		<	2 ug/L					
		1,1,2,2-tetrachloroethane		<	2 ug/L					
		1,2,3-trichloropropane		<	2 ug/L					
		n-propylbenzene		<	2 ug/L					
		bromobenzene		<	2 ug/L					
		1,3,5-trimethylbenzene		<	2 ug/L					
		2-chlorotoluene		<	2 ug/L					
		4-chlorotoluene		<	2 ug/L					
		tert-butylbenzene		<	2 ug/L					
		1,2,4-trimethylbenzene		<	2 ug/L					
		sec-butylbenzene		<	2 ug/L					
		1,3-dichlorobenzene		<	2 ug/L					
		4-isopropyltoluene		<	2 ug/L					
		1,4-dichlorobenzene		<	2 ug/L					
		1,2-dichlorobenzene		<	2 ug/L					
		n-butylbenzene		<	2 ug/L					
		1,2-dibromo-3-chloropropa	ine	<	2 ug/L					
		1,2,4-trichlorobenzene		<	2 ug/L					
		1,3,5-trichlorobenzene		<	2 ug/L					
		hexachlorobutadiene		<	2 ug/L					
		naphthalene		<	5 ug/L					
		1,2,3-trichlorobenzene		<	2 ug/L					
		dibromofluoromethane SU	R		98 %			78 114		
		toluene-D8 SUR			98 %			88 110		

92 %

4-bromofluorobenzene SUR

į

86 115

÷

Method	QC ID	Parameter	Associated Sample	Result Units	Amt Added	%R	Li	mit	RPD	RPD Limit
SW5030B8260B	LCS0900236	dichlorodifluoromethane		18 ug/L	20	91	70	130		
		chloromethane		15 ug/L	20	75	70	130		
		vinyl chloride		17 ug/L	20	83	70	130		
		bromomethane		23 ug/L	20	117	70	130		
		chloroethane		19 ug/L	20	93	70	130		
		trichlorofluoromethane		19 ug/L	20	96	70	130		
		diethyl ether		21 ug/L	20	106	70	130		
		acetone		25 ug/L	20	123	70	130		
		1,1-dichloroethene		20 ug/L	20	98	70	130		
		methylene chloride		22 ug/L	20	110	70	130		
		carbon disulfide		16 ug/L	20	82	70	130		
		methyl t-butyl ether (MTBE)	21 ug/L	20	107	70	130		
		trans-1,2-dichloroethene		20 ug/L	20	99	70	130		
		isopropyl ether (DIPE)		21 ug/L	20	106	70	130		
		ethyl t-butyl ether (ETBE)		24 ug/L	20	118	70	130		
		1,1-dichloroethane		20 ug/L	20	99	70	130		
		t-butanol (TBA)		110 ug/L	100	108	70	130		
		2-butanone (MEK)		20 ug/L	20	99	70	130		
		2,2-dichloropropane		12 ug/L	20	61	* 70	130		
		cis-1,2-dichloroethene		20 ug/L	20	100	70	130		
		chloroform		19 ug/L	20	95	70	130		
		bromochloromethane		20 ug/L	20	101	70	130		
		tetrahydrofuran (THF)		20 ug/L	20	102	70	130		
		1,1,1-trichloroethane		16 ug/L	20	81	70	130		
		1,1-dichloropropene		20 ug/L	20	102	70	130		
		t-amyl-methyl ether (TAME)	18 ug/L	20	88	70	130		
		carbon tetrachloride		14 ug/L	20	72	70	130		
		1,2-dichloroethane		21 ug/L	20	104	70	130		
		benzene		22 ug/L	20	110	70	130		
		trichloroethene		20 ug/L	20	100	70	130		
		1,2-dichloropropane		20 ug/L	20	102	70	130		
		bromodichloromethane		18 ug/L	20	90	70	130		
		1,4-dioxane		< 50 ug/L	40	105				
		dibromomethane		20 ug/L	20	100	70	130		
		4-methyl-2-pentanone (MIE	SK)	18 ug/L	20	89	70	130		
		cis-1,3-dichloropropene		15 ug/L	20	77	70	130		
		toluene		20 ug/L	20	101	70	130		
		trans-1,3-dichloropropene		17 ug/L	20	84	70	130		
		2-nexanone		20 ug/L	20	98	70	130		
		1,1,2-trichloroethane		21 ug/L	20	103	70	130		
		1,3-dichloropropane		22 ug/L	20	110	70	130		
		tetrachioroethene		22 ug/L	20	109	70	130		
		dibromocniorometnane		14 ug/L	20	72	70	130		
		1,2-oibromoetnane (EDB)		18 ug/L	20	91	70	130		
		Chiorobenzene		22 ug/L	20	112	70	130		
		r, r, r, z-tetrachioroethane		io ug/⊾	20	14	. 70	130		
		earyidenzene m&n-vylonoo		22 Ug/L	20 40	111	70 70	130		
		avvilene		41 ug/L 21 uo/l	40 20	103	70	130		
		U-Aylene styrono		21 UG/L	20 20	100	70	130		
		bromoform		21 ug/L 17 uo/l	20	104 94	/U 70	130		
		isonronylhenzene		17 uy/⊑ 20 uo/l	20	04 00	70 70	130		
		1 1 2 2 totrachioroothana		20 ug/L 21 ug/l	20	99 102	70	120		
		The second of the second second second second second second second second second second second second second se		Z i uyr	40	103	70	130		

_

Method	QC ID	Parameter	Associated Sample	Result Units	Amt Added	%R	Li	mit	RPD	RPD Limit
SW5030B8260	3 LCS0900236	1,2,3-trichloropropane		23 ug/L	20	116	70	130		
		n-propylbenzene		20 ug/L	20	98	70	130		
		bromobenzene		22 ug/L	20	109	70	130		
		1,3,5-trimethylbenzene		21 ug/L	20	104	70	130		
		2-chlorotoluene		21 ug/L	20	104	70	130		
		4-chlorotoluene		21 ug/L	20	104	70	130		
		tert-butylbenzene		19 ug/L	20	94	70	130		
		1,2,4-trimethylbenzene		21 ug/L	20	103	70	130		
		sec-butylbenzene		19 ug/L	20	97	70	130		
		1,3-dichlorobenzene		23 ug/L	20	113	70	130		
		4-isopropyltoluene		21 ug/L	20	104	70	130		
		1,4-dichlorobenzene		22 ug/L	20	110	70	130		
		1,2-dichlorobenzene		21 ug/L	20	103	70	130		
		n-butylbenzene		20 ug/L	20	98	70	130		
		1,2-dibromo-3-chloropropar	le	20 ug/L	20	102	70	130		
		1,2,4-trichlorobenzene		17 ug/L	20	86	70	130		
		1,3,5-trichlorobenzene		19 ug/L	20	95	70	130		
		hexachlorobutadiene		19 ug/L	20	95	70	130		
		naphthalene		24 ug/L	20	119	70	130		
		1,2,3-trichlorobenzene		20 ug/L	20	98	70	130		
		dibromofluoromethane SUR	2	98 %			78	114		
		toluene-D8 SUR		100 %			88	110		
		4-bromofluorobenzene SUF	२	106 %			86	115		

SW8000822001 LCSC0002283 dickomethane 19.92/L 20 93 70 130 1 20 SW8000822001 LCSC0002283 dickomethane 15.92/L 20 117 70 130 12 20 bitmomethane 21.92/L 20 117 70 130 0 20 chickoethane 19.92/L 20 168 70 130 12 20 delty/ether 21.92/L 20 168 70 130 3 20 carbon 21.92/L 20 618 70 130 3 20 carbon 21.92/L 20 618 70 130 3 20 carbon 6.93/L 20 814 70 130 3 20 isprong/ether (MTBE) 21.92/L 20 96 70 130 2 20 isprong/ether (MTBE) 21.92/L 20 97 70 130 2 20	Method QC ID	Parameter Associated Sample	Result Units	Amt Added	%R	Limit	RPD	RPD Limit
administration 15 appl. 20 73 70 30 4 20 administration 15 appl. 20 73 70 130 12 20 administration 16 appl. 20 171 70 130 0 20 20 100 70 130 12 20 20 100 70 130 12 20 20 100 70 130 12 20 20 100 70 130 12 20 20 100 70 130 12 20 20 100 70 130 12 20 20 100 130 12 20 100 130 12 20 130 14 20 20 100 130 12 20 130 14 20 20 20 20 20 20 20 20 20 20 20 20 20 20 <td< th=""><th>SW/5030B8260B LCSD0000236</th><th>dichlorodifluoromethane</th><th>18 ua/l</th><th>20</th><th>90</th><th>70 130</th><th>1</th><th>20</th></td<>	SW/5030B8260B LCSD0000236	dichlorodifluoromethane	18 ua/l	20	90	70 130	1	20
bill 17 10 13 13 1 20 binnomethane 20 20 13 10 20 chioxediane 10 001 20 22 100 100 20 dethy of ther 21 004 20 130 01 20 asteine 20 004 70 130 12 20 itholkorothane 19 001 20 83 70 130 12 20 chion dualitie 19 001 20 81 70 130 12 20 chion dualitie 19 001 20 81 70 130 13 20 tisn 14 20 104 70 130 13 20 <td< td=""><td>3445050B8200D LCSD0500200</td><td>chloromethane</td><td>15 µg/l</td><td>20</td><td>73</td><td>70 130</td><td>4</td><td>20</td></td<>	3445050B8200D LCSD0500200	chloromethane	15 µg/l	20	73	70 130	4	20
barnomethane barno		vinvl chloride	17 ug/l	20	83	70 130	1	20
chinomano 15 ag/L 20 82 70 130 0 20 ininicrolluonenhame 19 ag/L 20 98 70 130 3 20 delhy ther 21 ug/L 20 109 70 130 3 20 aaktone 22 ug/L 20 107 70 130 3 20 aaktone disultide 16 ug/L 20 107 70 130 3 20 ackhon disultide 16 ug/L 20 104 70 130 3 20 ackhon disultide 16 ug/L 20 103 70 130 2 20 iscorogy ether<((FEE)		bromomethane	23.ug/l	20	117	70 130	0	20
bicklostinus 3 - 3 - 3 - 2 2 6 - 6 7 13 1 adelhyl ether 21 ugl. 20 104 70 130 12 20 adelthyl ether 21 ugl. 20 107 70 130 12 20 1,1-dichicorethene 19 ugl. 20 93 70 130 12 20 eathon disutifies 16 ugl. 20 81 70 130 2 21 eathon disutifies 16 ugl. 20 84 70 130 2 23 istroproy ether (DFE) 21 ugl. 20 94 70 130 2 23 istroproy ether (DFE) 21 ugl. 20 97 70 130 12 23 istroproy ether (DFE) 21 ugl. 20 98 70 130 12 23 ichoritorm 19 ugl. 20 93 70 130 12 20 ichoritorm 19 ugl.		chloroethane	18 ug/L	20	92	70 130	Ő	20
abit abit <td< td=""><td></td><td>trichlorofluoromethane</td><td>19 ug/L</td><td>20</td><td>96</td><td>70 130</td><td>Õ</td><td>20</td></td<>		trichlorofluoromethane	19 ug/L	20	96	70 130	Õ	20
builty relation 2.1 spl. 2.0 1.0 7.0 1.00 1.2 20 1,1-idhhoreshene 19 ug/L 20 0.3 7.0 130 5 20 methylene chlorids 21 ug/L 20 0.8 7.0 130 1 20 carbon dsulfide 16 ug/L 20 0.81 7.0 130 3 20 trans-1,2-dichkoreshene 19 ug/L 20 0.81 7.0 130 3 20 ethyl tehdyl ether (TFEE) 24 ug/L 20 1.0 7.0 130 1 20 1,1-4 dshkoreshene 19 ug/L 20 6.7 130 1 20 2,2-dichkoreshene 130 ug/L 20 88 7.0 130 1 20 2,2-dichkoreshene 20 ug/L 20 88 7.0 130 2 20 2,2-dichkoreshene 20 ug/L 20 88 7.0 130 2 20 1,1-i-dichkoreshen		district official off	21 ug/L	20	104	70 130	3	20
abutue 12. up1 20 63 70 30 5 20 nithylene chknike 21 ug1 20 107 70 130 30 20 carbon daulice 16 ug1 20 81 70 130 30 20 interhyletoryl ather (NTEE) 21 ug1 20 144 70 130 32 20 isperproyl ather (DPE) 21 ug1 20 130 70 130 32 20 athatoreatione 19 ug1 20 147 70 130 14 20 it Atabtoreatione 19 ug1 20 137 70 130 14 20 it Atabtoreatione 19 ug1 20 63 70 130 14 20 22-diabinorepropene 13 ug1 20 63 70 130 12 20 itaritylytorian (THF) 18 ug1 20 63 70 130 12 20 itaritylone athine 17 ug1 20 64 70 130 12 20			21 ugre 22 ugre	20	109	70 130	12	20
Instantialization Display Display <thdisplay< th=""> Display <thdisplay< th=""></thdisplay<></thdisplay<>		1 1 dichloroothoro	19 ug/L	20	03	70 130	5	20
International value 1. Hogic 2.0 0.1 0.0 1.0 2.0 andhon disulfide 16 (ugVL 20 164 70 130 3 20 methyl todyl ether (MTEE) 21 ugVL 20 164 70 130 3 20 isopropyl ether (DTEE) 24 ug/L 20 167 70 130 1 20 1.1-dictionarithnen 19 ug/L 20 68 70 130 4 20 2.4-dictionarithnen 19 ug/L 20 68 70 130 4 20 2.4-dictionarithnen 13 ug/L 20 68 70 130 4 20 2.4-dictionarithnen 20 ug/L 20 98 70 130 2 20 dictorarithnen 19 ug/L 20 89 70 130 1 20 dictorarithnen 17 ug/L 20 160 70 130 1 20 dictorarithnen		r, r-dichioroethene	15 ugr∟ 21 ug/l	20	107	70 130	3	20
analytik buty der (MTBE) 21 20 04 70 130 3 20 trans-12_ciclinkorofhene 19 ugl 20 96 70 130 3 20 chyl tody lether (MTBE) 24 ugl 20 119 70 130 1 20 chyl tody lether (STBE) 24 ugl 20 197 70 130 1 20 chyl tody lether (STBE) 24 ugl 20 97 70 130 1 20 2.2-dichtorogropane 13 100 11 20 2.2 20 2.2 20 2.2-dichtorogropane 13 100 2 20 2.2 20 2.2 20 chanochtorm 19 ugl 20 90 70 130 2 20 tochtorochtorm 19 ugl 20 90 70 130 2 20 tochtorochtorm 19 ugl 20 100 70 130 2 20 tochtorochtorne 10<		corbon disulfido	21 ug/L 16 ug/l	20	81	70 130	1	20
trans-12.dickinoce/hene 19.gL 20 06 70 120 2 20 isspropy Hene (DPE) 21.ugL 20 103 70 130 12 20 ethyl Houly Hene (DPE) 21.ugL 20 119 70 130 12 20 ethyl Houly Hene (TEE) 21.ugL 20 97 70 130 12 20 1.1, dichloreathene 19.ugL 20 98 70 130 14 20 2.2, dichloreapropane 13.ugL 20 98 70 130 12 20 chica/corm 19.ugL 20 98 70 130 12 20 tormochloreathane 20.ugL 20 99 70 130 12 20 tormochloreathane 17.ugL 20 84 70 130 12 20 tormochloreathane 17.ugL 20 86 70 130 12 20 tormochloreathane 19.ugL 20 97 70 130 12 20		carbol disusue	10 ug/⊑ 21 ug/l	20	104	70 130	3	20
Lands L-2.Luburdentiation 10 kg/L 20 00 70 130 1 20 ekply Lough ether (ETBE) 24 kg/L 20 119 70 130 1 20 1,1 dedialocedhana 19 ug/L 20 90 70 130 18 20 2,2 dedihoropropane 13 ug/L 20 88 70 130 1 20 2,2 dedihoropropane 13 ug/L 20 93 70 130 2 20 2,2 dedihoropropane 20 ug/L 20 90 70 130 2 20 2,2 dedihoropropane 20 ug/L 20 90 70 130 2 20 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,		trans 1.2 diableresthene	21 ug/L 19 ug/l	20	96	70 130	2	20
bight pick (bit (bit)) 1 age 20 119 70 130 12 city (but) (all) 20 97 70 130 12 20 Lutano (TBA) 90 ugL 100 90 70 130 14 20 2.2 dichtorogropane 13 ugL 20 63 70 130 1 20 cis-1.2 dichtorogropane 19 ugL 20 99 70 130 1 20 cis-1.2 dichtorogropane 20 ugL 20 99 70 130 1 20 cistoroform 19 ugL 20 90 70 130 1 20 cistoroform 19 ugL 20 90 70 130 2 20 tittahytofixan (THF) 18 ugL 20 80 70 130 2 20 tanyi-metry elenc (TAME) 18 ugL 20 164 70 130 2 20 tachtorosthane 19 ugL 20 97 70 130 2 20 tachtorosthane 19 ugL <td></td> <td>iconreput other (DIPE)</td> <td>19 ug/⊑ 21 ug/l</td> <td>20</td> <td>103</td> <td>70 130</td> <td>3</td> <td>20</td>		iconreput other (DIPE)	19 ug/⊑ 21 ug/l	20	103	70 130	3	20
big 24 bgL 20 97 70 130 22 20 t-butanon (MEK) 90 ugL 100 90 70 130 14 20 2-butanone (MEK) 18 ugL 20 63 70 130 14 20 2-butanone (MEK) 18 ugL 20 63 70 130 1 20 cis 1-butanone (MEK) 18 ugL 20 63 70 130 2 20 cis 1-butanone (MEK) 19 ugL 20 93 70 130 2 20 bromachionomethane 20 ugL 20 94 70 130 3 20 1,1-dickloropapene 20 ugL 20 100 70 130 6 20 1,1-dickloropapene 21 ugL 20 104 70 130 4 20 1,1-dickloropapene 22 ugL 20 104 70 130 4 20 1,2-dickloropapane 22 ugL 20 100 70 130 4 20		isopropyi ener (Dire)	21ug/∟ 24.uo/l	20	110	70 130	1	20
i, Hackmind Halle 19 augl. 20 60 100		4 dishleresthere	24 ug/L 10 ug/L	20	07	70 130	י י	20
Poundamin (1984) Bu ugl, 100 B0 TO 130 11 20 2,2,3:dichloropropane 13 ugl, 20 63 TO 130 4 20 cis-1,2,4:dichloropropane 20 ugl, 20 89 TO 130 2 20 bromochloromelhane 20 ugl, 20 89 TO 130 2 20 tetrahydrofuran (THF) 18 ugl, 20 84 TO 130 2 20 1,1,4:dichloropropene 20 ugl, 20 89 TO 130 2 20 tetrahydrofuran (THF) 18 ugl, 20 89 TO 130 2 20 tetrahydrofuran (THF) 18 ugl, 20 89 TO 130 2 20 tetrahydrofuran (THF) 18 ugl, 20 89 TO 130 2 20 tetrahydrofuran (THF) 18 ugl, 20 76 TO 130 2 20 tetrahydrofuran (THF) 19 ugl, 20 101 TO 130 2 20 tetrahydrofuran (THF) 19 ugl, 20 100 TO 130 2 <td></td> <td>I, I-dichioroeuriane</td> <td>19 Uy/L 00 ug/l</td> <td>100</td> <td>00</td> <td>70 130</td> <td>2 18</td> <td>20</td>		I, I-dichioroeuriane	19 Uy/L 00 ug/l	100	00	70 130	2 18	20
2-ditabicrogropene 13 ugl. 20 63 70 130 14 20 dis-1,2-dichicrosphene 20 ugl. 20 99 70 130 14 20 chicrosform 19 ugl. 20 99 70 130 12 20 bicronchicromethane 20 ugl. 20 99 70 130 12 20 1,1,1-idibicrosphene 20 ugl. 20 90 70 130 12 20 1,1,1-idibicrosphene 20 ugl. 20 100 70 130 1 20 1,2-dichicrostefane 21 ugl. 20 88 70 130 1 20 1,2-dichicrostefane 21 ugl. 20 104 70 130 4 20 1,2-dichicrostefane 20 ugl. 20 100 70 130 4 20 1,2-dichicrostefane 19 ugl. 20 97 70 130 4 20 1,2-dichicrostefane 19 ugl. 20 97 70 130 4 20 <		t-butanoi (TBA)	90 ug/⊑ 19 ug/l	20	90 90	70 130	10	20
2,2-Biolicity Diparts 10 ugl 20 93 70 130 1 20 chloroform 19 ugl 20 93 70 130 2 20 bronzochloromethane 20 ugl 20 93 70 130 2 20 totrahydrothrane 20 ugl 20 93 70 130 2 20 totrahydrothrane 20 ugl 20 94 70 130 3 20 1,1-tichhorophopene 20 ugl 20 84 70 130 1 20 carbon tetrazhotride 15 ugl 20 76 70 130 1 20 carbon tetrazhotride 15 ugl 20 76 70 130 1 20 tothoropethane 21 ugl 20 97 70 130 4 20 1,2-dichloropethane 19 ugl 20 97 70 130 4 20 tothoropethane 19 ugl 20 97 70 130 4 20 tothoropetha		2-butanone (MEK)	io ug/∟ 12 ug/l	20	60	* 70 120	1	20
cisi-1,2-dichloroberheite 20 93 70 130 2 20 chloroform 19 0g/L 20 93 70 130 2 20 terraryldrofuran (THF) 19 0g/L 20 93 70 130 2 20 1,1-trickhoropropene 20 0g/L 20 84 70 130 2 20 tamb 17 19/L 20 84 70 130 2 20 tamb 17 19/L 20 70 70 130 1 20 tamb 17 10/L 20 70 130 1 20 tathon 15/adhiorophene 21 13/L 20 97 70 130 2 20 tichlorophene 19 19/L 20 97 70 130 2 20 tichlorophene 19 19/L 20 97 70 130 <td< td=""><td></td><td>2,2-dichloropropane</td><td>To ug/⊑ 20. v.e/t</td><td>20</td><td>03</td><td>70 130</td><td>4</td><td>20</td></td<>		2,2-dichloropropane	To ug/⊑ 20. v.e/t	20	03	70 130	4	20
Characterin 19 ug/L 20 93 70 130 2 20 beromechicomethane 20 ug/L 20 90 70 130 12 20 1,1,4:bibrorobhane 17 ug/L 20 84 70 130 1 20 1,1-dichloropopene 20 ug/L 20 84 70 130 1 20 1,1-dichlorophene 20 ug/L 20 89 70 130 1 20 1,2-dichlorophane 21 ug/L 20 76 70 130 4 20 1,2-dichlorophane 21 ug/L 20 97 70 130 4 20 1,2-dichlorophane 20 ug/L 20 97 70 130 4 20 1,1-dickane 19 ug/L 20 97 70 130 3 20 1,1-dickane 19 ug/L 20 97 70 130 3 20 1,1-dickane 19 ug/L		CIS-1,2-dichloroetnene	20 Ug/L 10 ug/l	20	99 02	70 130	ו ס	20
bornbornbrokentering 20 ug/L 20 ug/L 20 95 70 130 12 20 tetrahydrochram 17 ug/L 20 84 70 130 3 20 1,1,1-trichloroethane 17 ug/L 20 84 70 130 2 20 Lamiy-methylether (TAME) 18 ug/L 20 76 70 130 6 20 carbon tetrachloride 15 ug/L 20 76 70 130 6 20 benzene 22 ug/L 20 104 70 130 4 20 tickhorophane 20 ug/L 20 97 70 130 4 20 tickhorophane 19 ug/L 20 97 70 130 3 20 tickhorophane 19 ug/L 20 97 70 130 3 20 tickhorophane 19 ug/L 20 97 70 130 4 20 tickhorophane <td></td> <td>Chlorororm</td> <td>T9 ug/∟ 20 ug/l</td> <td>20</td> <td>90 00</td> <td>70 130</td> <td>2</td> <td>20</td>		Chlorororm	T9 ug/∟ 20 ug/l	20	90 00	70 130	2	20
tetrahydrolutari (1+r) 16 ug/L 20 80 70 130 12 20 1,1,1-tickhoropropene 20 ug/L 20 100 70 130 2 20 tamy-methyl ethor (TAME) 18 ug/L 20 80 70 130 0 20 1,2,dichtoropropene 21 ug/L 20 104 70 130 1 20 benzene 21 ug/L 20 104 70 130 1 20 1,2,dichtoropropane 21 ug/L 20 100 70 130 1 20 bornomichtoromethane 19 ug/L 20 80 70 130 3 20 1,4-dicixane < 50 ug/L			20 ug/L	20	99	70 130	2 10	20
1,1,1-trichioroethane 17 /g/L 20 64 70 130 3 20 1,1-dichioropropene 20 /g/L 20 100 70 130 1 20 carbon tetrachloride 15 /g/L 20 88 70 130 6 20 1,2-dichtoroethane 21 /g/L 20 109 70 130 4 20 benzene 22 /g/L 20 100 70 130 4 20 trichioroethane 19 /g/L 20 97 70 130 4 20 trichioroethane 19 /g/L 20 97 70 130 3 20 trichioroethane 19 /g/L 20 97 70 130 3 20 trichioroethane 19 /g/L 20 97 70 130 3 20 dibromomethane 19 /g/L 20 81 70 130 3 20 cis-1,3-dichioropropane 20 /g/L 20 100 70 130 4 20 tot		tetranydroturan (THF)	18 ug/L	20	90	70 130	21	20
1,1-achloropropene 20 g/g/L 20 100 70 130 2 20 tamyt-methyl ether (TAME) 16 ug/L 20 89 70 130 6 20 carbon tetrahloride 16 ug/L 20 76 70 130 0 20 1,2-dichtoroethane 21 ug/L 20 104 70 130 4 20 trichtoroethene 19 ug/L 20 97 70 130 4 20 trichtoroethene 19 ug/L 20 93 70 130 3 20 trichtoroethane 19 ug/L 20 97 70 130 3 20 trichtoroethane 19 ug/L 20 93 70 130 3 20 1,4-dickane 5 6 ug/L 20 81 70 130 3 20 dibroromomethane 16 ug/L 20 81 70 130 4 20 totue 136-dichtoropropene 16 ug/L 20 106 70 130 4 <td< td=""><td></td><td>1,1,1-trichloroethane</td><td>17 ug/L</td><td>20</td><td>84 400</td><td>70 130</td><td>ა ი</td><td>20</td></td<>		1,1,1-trichloroethane	17 ug/L	20	84 400	70 130	ა ი	20
tanyl-methyl ethyl (MAE)18 ByDL2068701.30120cahon tetrachloride15 ug/L2076701306201.2.dichloroethane21 ug/L2010470130120benzene22 ug/L2097701304201,2.dichloropropane20 ug/L2093701303201,4.dioxane<		1,1-dichloropropene	20 Ug/L	20	100	70 130	2	20
achon leffachloride15 lg/l.2070701306201,2-dichloroethane21 ug/l.2010970130120benzene22 ug/l.2097701302201,2-dichloropropane20 ug/l.209770130220bromodichloromethane19 ug/l.2097701303201,4-dioxane<		t-amyl-methyl ether (TAME)	18 Ug/L	20	89	70 130	1	20
1,2-dichloroethane 21 ug/L 20 104 70 130 0 20 benzene 22 ug/L 20 109 70 130 4 20 tichloroethene 19 ug/L 20 97 70 130 2 20 horomodichloromethane 19 ug/L 20 90 70 130 3 20 1,4-dioxane 50 ug/L 40 87 180 3 20 dibroromoethane 19 ug/L 20 97 70 130 3 20 4-methyl-2-pentanone (MIBK) 16 ug/L 20 97 70 130 4 20 toluene 20 ug/L 20 81 70 130 4 20 toluene 20 ug/L 20 88 70 130 4 20 toluene 20 ug/L 20 100 70 130 4 20 thetashoroethane 20 ug/L 20 100 70 130 4 20 thetashoroethane 21 ug		carbon tetrachloride	15 ug/L	20	/0	70 130	0	20
benzene 22 ug/L 20 109 70 130 1 20 trichloroethene 19 ug/L 20 97 70 130 4 20 1,2-dichloropropane 20 ug/L 20 93 70 130 2 20 1,4-dioxane 50 ug/L 40 87 18 20 4-methyl-2-pentanone (MIBK) 16 ug/L 20 97 70 130 3 20 4-methyl-2-pentanone (MIBK) 16 ug/L 20 81 70 130 4 20 tubere 20 ug/L 20 100 70 130 4 20 tubere 20 ug/L 20 100 70 130 4 20 2-bexanone 18 ug/L 20 88 70 130 4 20 1,3-dichloropropene 21 ug/L 20 106 70 130 4 20 1,3-dichloropropane 21 ug/L 20 106 70 130 4 20 1,3-dichloropropane 21		1,2-dichloroethane	21 ug/L	20	104	70 130	U Á	20
fichloroethene19 ug/L2097701304201,2-dichloropropane20 ug/L2010070130220bromodichloromethane19 ug/L2097701303201,4-dioxane<		benzene	22 ug/L	20	109	70 130	1	20
1,2-dichloropropane20 ug/L2010070130220bromodichloromethane19 ug/L2093701303201,4-dioxane<		trichloroethene	19 ug/L	20	97	70 130	4	20
bromodichloromethane19 ug/L2093701303201,4-dioxane< 50 ug/L		1,2-dichloropropane	20 ug/L	20	100	70 130	2	20
1.4dioxane<50 ug/L40871820dibromomethane19 ug/L2097701303204-methyl-2-pentanone (MIBK)16 ug/L208170130420cis-1,3-dichloropropene16 ug/L207970130420toluene20 ug/L20100701304202-hexanone18 ug/L2088701304201,3-dichloropropane20 ug/L20102701302201,3-dichloropropane21 ug/L20106701304201,3-dichloropropane22 ug/L20106701304201,3-dichloropropane22 ug/L20108701304201,3-dichloropropane22 ug/L2010870130120dibromochloromethane15 ug/L2076701301201,2-dibromochlano15 ug/L2079701302201,1,1,2-tetrachloroethane16 ug/L2079701302201,1,1,2-tetrachloroethane21 ug/L20108701302201,1,1,2-tetrachloroethane21 ug/L20108701302201,1,1,2-tetrachloroethane21 ug/L20108701302201,1,1,2-		bromodichloromethane	19 ug/L	20	93	70 130	3	20
dibromomethane19 ug/L2097701303204-methyl-2-pentanone (MIBK)16 ug/L208170130920cis-1,3-dichloropropene16 ug/L207970130420toluene20 ug/L208870130920trans-1,3-dichloropropene18 ug/L2088701309202-hexanone18 ug/L2088701309201,1,2-trichloroethane20 ug/L20102701304201,3-dichloropropane21 ug/L2010670130420ibromochloromethane15 ug/L207670130120dibromochloromethane15 ug/L20701301201,2-dibromoethane (EDB)18 ug/L2092701302201,1,2-tetrachloroethane22 ug/L20108701302201,1,1,2-tetrachloroethane16 ug/L207970130220ng-xylenes21 ug/L2010870130220ispropylenzene21 ug/L20104701302201,1,2,2-tetrachloroethane21 ug/L2010370130220ispropylenzene21 ug/L2010370130220ispropylbenzene		1,4-dioxane	< 50 ug/L	40	87	70 100	18	20
4-methyl-2-pentanone (MIBK)16 ug/L208170130920cis-1,3-dichloropropene16 ug/L207970130420toluene20 ug/L2010070130220trans-1,3-dichloropropene18 ug/L2088701309202-hexanone18 ug/L2089701309201,1,2-trichloroptopane20 ug/L2010270130220tetrachloroptopane21 ug/L2010870130420dibromochloromethane15 ug/L2076701301201,2-dibromoethane (EDB)18 ug/L209270130120chloroptopane22 ug/L20109701302201,2-dibromoethane (EDB)18 ug/L2070130120chlorobenzene22 ug/L20109701302201,1,1,2-tetrachloroethane11 ug/L2010870130220m&p-xylenes21 ug/L2010370130220syrene21 ug/L20103701302201,1,2-tetrachloroethane21 ug/L2010370130220m&p-xylenes21 ug/L2010370130320m&p-xylene21 ug/L		dibromomethane	19 ug/L	20	97	70 130	3	20
cis-1,3-dichloropropene16 ug/L207970130420toluene20 ug/L2010070130220trans-1,3-dichloropropene18 ug/L2088701304202-hexanone18 ug/L2089701309201,1,2-trichloroethane20 ug/L20102701302201,3-dichloropropane21 ug/L2010670130420dibromochloromethane22 ug/L20108701301201,2-dibromoethane (EDB)18 ug/L2092701301201,1,1,2-terachloroethane22 ug/L20109701302201,2-dibromoethane (EDB)18 ug/L2092701302201,1,1,2-terachloroethane22 ug/L20109701302201,1,1,2-terachloroethane16 ug/L2079701302201,1,1,2-terachloroethane21 ug/L20108701302201,1,1,2-terachloroethane21 ug/L20104701302201,1,2,2-terachloroethane21 ug/L20103701302201,1,2,2-terachloroethane11 ug/L20103701303201,1,2,2-terachloroethane11 ug/L208770 <td< td=""><td></td><td>4-methyl-2-pentanone (MIBK)</td><td>16 ug/L</td><td>20</td><td>81</td><td>70 130</td><td>9</td><td>20</td></td<>		4-methyl-2-pentanone (MIBK)	16 ug/L	20	81	70 130	9	20
toluene20 ug/L2010070130220trans-1,3-dichloropropene18 ug/L2088701304202-hexanone18 ug/L2089701309201,1,2-trichloroethane20 ug/L20102701302201,3-dichloropropane21 ug/L2010670130420tetrachloroethane22 ug/L2010670130120dibromochloromethane15 ug/L20701301201,2-dibronoethane (EDB)18 ug/L209270130120chlorobenzene22 ug/L20108701302201,1,1,2-tetrachloroethane16 ug/L2079701302201,1,2-tetrachloroethane22 ug/L20108701302201,1,2-tetrachloroethane22 ug/L20108701302201,1,2-tetrachloroethane21 ug/L2010470130220oxylene21 ug/L2010370130320utbronoform17 ug/L208770130320utbronoform17 ug/L208770130320utbronoform17 ug/L208770130320utbronoform17 ug/L20		cis-1,3-dichloropropene	16 ug/L	20	79	70 130	4	20
trans-1,3-dichloropropene18 ug/L2088701304202-hexanone18 ug/L2089701309201,1,2-trichloroethane20 ug/L20102701302201,3-dichloropropane21 ug/L2010670130420tetrachloroethane22 ug/L2010870130120dibromochloromethane15 ug/L2076701305201,2-dibromoethane (EDB)18 ug/L209270130120chlorobenzene22 ug/L20109701302201,1,1,2-tetrachloroethane16 ug/L207970130220n&p-xylenes14 ug/L4010270130220o-xylene21 ug/L2010470130220styrene21 ug/L2010370130220isopropylbenzene11 ug/L208770130220isopropylbenzene19 ug/L209670130320isopropylbenzene19 ug/L209670130320isopropylbenzene19 ug/L209670130320isopropylbenzene19 ug/L209670130320isopropylbenzene19 ug/L20<		toluene	20 ug/L	20	100	70 130	2	20
2-hexanone18 ug/L2089701309201,1,2-trichioroethane20 ug/L20102701302201,3-dichioropropane21 ug/L2010670130420tetrachloroethene22 ug/L2010870130120dibromochloromethane15 ug/L2076701301201,2-dibromoethane (EDB)18 ug/L209270130120chlorobenzene22 ug/L20109701302201,1,1,2-tetrachloroethane16 ug/L207970130220nkp-xylenes41 ug/L4010270130220o-xylene21 ug/L2010370130220styrene21 ug/L2010370130220styrene21 ug/L2010370130220styrene21 ug/L2010370130320styrene17 ug/L208770130320isopropylbenzene19 ug/L2096701303201,1,2,2-tetrachloroethane21 ug/L20104701303201,1,2,2-tetrachloroethane21 ug/L20104701303201,1,2,2-tetrachloroethane19 ug/L20<		trans-1,3-dichloropropene	18 ug/L	20	88	70 130	4	20
1,1,2-trichloroethane20 ug/L20102701302201,3-dichloropropane21 ug/L2010670130420tetrachloroethene22 ug/L2010870130120dibromochloromethane15 ug/L2076701301201,2-dibromoethane (EDB)18 ug/L209270130120chlorobenzene22 ug/L20109701302201,1,1,2-tetrachloroethane16 ug/L2079701302201,1,1,2-tetrachloroethane16 ug/L2010870130220n&p-xylenes21 ug/L2010470130220o-xylene21 ug/L2010370130220styrene21 ug/L2010370130220styrene21 ug/L2010370130320isopropylbenzene19 ug/L2087701303201,1,2,2-tetrachloroethane19 ug/L209670130320130320104701303201401027013032010201501010101010202015010101013032014		2-hexanone	18 ug/L	20	89	70 130	9	20
1,3-dichloropropane21 ug/L2010670130420tetrachloroethene22 ug/L2010870130120dibromochloromethane15 ug/L2076701305201,2-dibromoethane (EDB)18 ug/L209270130120chlorobenzene22 ug/L20109701302201,1,1,2-tetrachloroethane16 ug/L207970130720ethylbenzene22 ug/L2010870130320m&p-xylenes41 ug/L4010270130220o-xylene21 ug/L2010370130220styrene21 ug/L2010370130320isopropylbenzene17 ug/L208770130320isopropylbenzene19 ug/L2096701303201,1,2,2-tetrachloroethane21 ug/L2010470130320		1,1,2-trichloroethane	20 ug/L	20	102	70 130	2	20
tetrachloroethene22 ug/L2010870130120dibromochloromethane15 ug/L2076701305201,2-dibromoethane (EDB)18 ug/L209270130120chlorobenzene22 ug/L20109701302201,1,1,2-tetrachloroethane16 ug/L207970130720ethylbenzene22 ug/L2010870130320m&p-xylenes41 ug/L4010270130220o-xylene21 ug/L2010370130220bromoform17 ug/L208770130320isopropylbenzene19 ug/L2096701303201,1,2,2-tetrachloroethane21 ug/L2010470130320202021 ug/L20103701303202021 ug/L20103701303202021 ug/L2096701303202021 ug/L20104701303202021 ug/L2096701303202021 ug/L20104701302202021 ug/L20104701302202020 </td <td></td> <td>1,3-dichloropropane</td> <td>21 ug/L</td> <td>20</td> <td>106</td> <td>70 130</td> <td>4</td> <td>20</td>		1,3-dichloropropane	21 ug/L	20	106	70 130	4	20
dibromochloromethane15 ug/L2076701305201,2-dibromoethane (EDB)18 ug/L209270130120chlorobenzene22 ug/L20109701302201,1,1,2-tetrachloroethane16 ug/L207970130720ethylbenzene22 ug/L2010870130320m&p-xylenes41 ug/L4010270130220o-xylene21 ug/L2010470130220styrene17 ug/L208770130320isopropylbenzene19 ug/L2096701303201,1,2,2-tetrachloroethane21 ug/L20104701303202010101032010103202021 ug/L20103701303202021 ug/L2087701303202021 ug/L2096701303202021 ug/L20104701303202021 ug/L20104701303202021 ug/L20104701303202021 ug/L201047013032021 ug/L2010		tetrachloroethene	22 ug/L	20	108	70 130	1	20
1,2-dibromoethane (EDB)18 ug/L209270130120chlorobenzene22 ug/L20109701302201,1,1,2-tetrachloroethane16 ug/L207970130720ethylbenzene22 ug/L2010870130320m&p-xylenes41 ug/L4010270130220o-xylene21 ug/L2010470130220styrene17 ug/L208770130320isopropylbenzene19 ug/L2096701303201,1,2,2-tetrachloroethane21 ug/L20104701303202,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,		dibromochloromethane	15 ug/L	20	76	70 130	5	20
chlorobenzene22 ug/L20109701302201,1,1,2-tetrachloroethane16 ug/L207970130720ethylbenzene22 ug/L2010870130320m&p-xylenes41 ug/L4010270130220o-xylene21 ug/L2010470130220styrene21 ug/L2010370130120bromoform17 ug/L208770130320isopropylbenzene19 ug/L2096701303201,1,2,2-tetrachloroethane21 ug/L2010470130220		1,2-dibromoethane (EDB)	18 ug/L	20	92	70 130	1	20
1,1,1,2-tetrachloroethane16 ug/L207970130720ethylbenzene22 ug/L2010870130320m&p-xylenes41 ug/L4010270130220o-xylene21 ug/L2010470130220styrene21 ug/L2010370130120bromoform17 ug/L208770130320isopropylbenzene19 ug/L2096701303201,1,2,2-tetrachloroethane21 ug/L2010470130220		chlorobenzene	22 ug/L	20	109	70 130	2	20
ethylbenzene22 ug/L2010870130320m&p-xylenes41 ug/L4010270130220o-xylene21 ug/L2010470130220styrene21 ug/L2010370130120bromoform17 ug/L208770130320isopropylbenzene19 ug/L2096701303201,1,2,2-tetrachloroethane21 ug/L2010470130220		1,1,1,2-tetrachloroethane	16 ug/L	20	79	70 130	7	20
m&p-xylenes41 ug/L4010270130220o-xylene21 ug/L2010470130220styrene21 ug/L2010370130120bromoform17 ug/L208770130320isopropylbenzene19 ug/L2096701303201,1,2,2-tetrachloroethane21 ug/L2010470130220		ethylbenzene	22 ug/L	20	108	70 130	3	20
o-xylene21 ug/L2010470130220styrene21 ug/L2010370130120bromoform17 ug/L208770130320isopropylbenzene19 ug/L2096701303201,1,2,2-tetrachloroethane21 ug/L2010470130220		m&p-xylenes	41 ug/L	40	102	70 130	2	20
styrene21 ug/L2010370130120bromoform17 ug/L208770130320isopropylbenzene19 ug/L2096701303201,1,2,2-tetrachloroethane21 ug/L2010470130220		o-xylene	21 ug/L	20	104	70 130	2	20
bromoform17 ug/L208770130320isopropylbenzene19 ug/L2096701303201,1,2,2-tetrachloroethane21 ug/L2010470130220		styrene	21 ug/L	20	103	70 130	1	20
isopropylbenzene 19 ug/L 20 96 70 130 3 20 1,1,2,2-tetrachloroethane 21 ug/L 20 104 70 130 2 20		bromoform	17 ug/L	20	87	70 130	3	20
1,1,2,2-tetrachloroethane 21 ug/L 20 104 70 130 2 20		isopropylbenzene	19 ug/L	20	96	70 130	3	20
		1,1,2,2-tetrachloroethane	21 ug/L	20	104	70 130	2	20

Method	QC ID	Parameter	Associated Sample	Result Units	Amt Added	%R	Li	mit	RPD	RPD Limit
SW5030B8260B	LCSD0900236	1,2,3-trichloropropane		22 ug/L	20	112	70	130	3	20
		n-propylbenzene		20 ug/L	20	99	70	130	1	20
		bromobenzene		22 ug/L	20	109	70	130	0	20
		1,3,5-trimethylbenzene		21 ug/L	20	104	70	130	1	20
		2-chlorotoluene		21 ug/L	20	104	70	130	0	20
		4-chlorotoluene		21 ug/L	20	104	70	130	0	20
		tert-butylbenzene		19 ug/L	20	94	70	130	1	20
		1,2,4-trimethylbenzene		20 ug/L	20	101	70	130	2	20
		sec-butylbenzene		19 ug/L	20	97	70	130	0	20
		1,3-dichlorobenzene		22 ug/L	20	111	70	130	2	20
		4-isopropyltoluene		20 ug/L	20	102	70	130	2	20
		1,4-dichlorobenzene		22 ug/L	20	108	70	130	2	20
		1,2-dichlorobenzene		20 ug/L	20	101	70	130	2	20
		n-butylbenzene		19 ug/L	20	95	70	130	3	20
		1,2-dibromo-3-chloropropan	e	21 ug/L	20	105	70	130	3	20
		1,2,4-trichlorobenzene		17 ug/L	20	84	70	130	2	20
		1,3,5-trichlorobenzene		20 ug/L	20	99	70	130	5	20
		hexachlorobutadiene		19 ug/L	20	97	70	130	1	20
		naphthalene		23 ug/L	20	114	70	130	4	20
		1,2,3-trichlorobenzene		19 ug/L	20	94	70	130	4	20
		dibromofluoromethane SUR		98 %			78	1 1 4		
		toluene-D8 SUR		101 %			88	110		
		4-bromofluorobenzene SUR		105 %			86	115		

Method	QC ID	Parameter	Associated Sample	Res	ult	Units	Amt Added	%R	Limit	RPD	RPD Limit
SW5030B8260B	BLK0900247	dichlorodifluoromethane		<	2	ug/L					
		chloromethane		<	2	ug/L					
		vinyl chloride		<	2	ug/L					
		bromomethane		<	2	ug/L					
		chloroethane		<	2	ug/L					
		trichlorofluoromethane		<	2	ug/L					
		diethyl ether		<	10	ug/L					
		acetone		<	10	ug/L					
		1,1-dichloroethene		<	1	ug/L					
		methylene chloride		<	5	ug/L					
		carbon disulfide		<	2	ug/L					
		methyl t-butyl ether (MTBE)	<	2	ug/L					
		trans-1,2-dichloroethene		<	2	ug/L					
		isopropyl ether (DIPE)		<	2	ug/L					
		ethyl t-butyl ether (ETBE)		<	2	ug/L					
		1,1-dichloroethane		<	2	ug/L					
		t-butanol (TBA)		<	40	ug/L					
		2-butanone (MEK)		<	10	ug/L					
		2,2-dichloropropane		<	2	ug/L					
		cis-1,2-dichloroethene		<	2	ug/L					
		chloroform		<	2	ug/L					
		bromochloromethane		<	2	ug/L					
		tetrahydrofuran (THF)		<	10	ug/L					
		1,1,1-trichloroethane		<	2	ug/L					
		1,1-dichloropropene		<	2	ug/L					
		t-amyl-methyl ether (TAME)	<	2	ug/L					
		carbon tetrachloride		<	2	ug/L					
		1,2-dichloroethane		<	2	ug/L					
		benzene		<	2	ug/L					
		trichloroethene		<	2	ug/L					
		1,2-dichloropropane		<	2	ug/L					
		bromodichloromethane		<	2	ug/L					
		1,4-dioxane		<	50	ug/L					
		dibromomethane		<	2	ug/L					
		4-methyl-2-pentanone (MIE	BK)	<	10	ug/L					
		cis-1,3-dichloropropene		<	2	ug/L					
		toluene		<	2	ug/L					
		trans-1,3-dichloropropene		<	2	ug/L					
		2-hexanone		<	10	ug/L					
		1,1,2-trichloroethane		<	2	ug/L					
		1,3-dichloropropane		<	2	ug/L					
		tetrachloroethene		<	2	ug/L					
		dibromochloromethane		<	2	ug/L					
		1,2-dibromoethane (EDB)		<	2	ug/L					
		chlorobenzene		<	2	ug/L					
		1,1,1,2-tetrachloroethane		<	2	ug/L					
		ethylbenzene		<	2	ug/L					
		m&p-xylenes		<	2	ug/L					
		o-xylene		<	2	ug/L					
		styrene		<	2	ug/L					
		bromoform		<	2	ug/L					
		isopropylbenzene		<	2	ug/L					
		1,1,2,2-tetrachloroethane		<	2	ug/L					
									RL Res	ource Lab	oratories, LLC
Method	QC ID	Parameter	Associated Sample	Rest	ılt Units	Amt Added	%R	Lir	nit	RPD	RPD Limit
--------------	------------	---------------------------	-------------------	------	-----------	-----------	----	-----	-----	-----	-----------
SW5030B8260B	BLK0900247	1,2,3-trichloropropane		<	2 ug/L						
		n-propylbenzene		<	2 ug/L						
		bromobenzene		<	2 ug/L						
		1,3,5-trimethylbenzene		<	2 ug/L						
		2-chlorotoluene		<	2 ug/L						
		4-chlorotoluene		<	2 ug/L						
		tert-butylbenzene		<	2 ug/L						
		1,2,4-trimethylbenzene		<	2 ug/L						
		sec-butylbenzene		<	2 ug/L						
		1,3-dichlorobenzene		<	2 ug/L						
		4-isopropyltoluene		<	2 ug/L						
		1,4-dichlorobenzene		<	2 ug/L						
		1,2-dichlorobenzene		<	2 ug/L						
		n-butylbenzene		<	2 ug/L						
		1,2-dibromo-3-chloropropa	ne	<	2 ug/L						
		1,2,4-trichlorobenzene		<	2 ug/L						
		1,3,5-trichlorobenzene		<	2 ug/L						
		hexachlorobutadiene		<	2 ug/L						
		naphthalene		<	5 ug/L						
		1,2,3-trichlorobenzene		<	2 ug/L						
		dibromofluoromethane SU	R		94 %			78	114		
		toluene-D8 SUR			96 %			88	110		
		4-bromofluorobenzene SU	R		89 %			86	115		

ſ

Method QC ID	Parameter Associated Samp	le Result Units	Amt Added	%R	Lin	nit	RPD	RPD Limit
SW5030B8260B LCS0900247	dichlorodifluoromethane	19 ug/L	20	93	70	130		
	chloromethane	15 ug/L	20	75	70	130		
	vinyl chloride	18 ug/L	20	88	70	130		
	bromomethane	23 ug/L	20	116	70	130		
	chloroethane	18 ug/L	20	91	70	130		
	trichlorofluoromethane	20 ug/L	20	99	70	130		
	diethyl ether	21 ug/L	20	106	70	130		
	acetone	20 ug/L	20	100	70	130		
	1,1-dichloroethene	20 ug/L	20	100	70	130		
	methylene chloride	21 ug/L	20	106	70	130		
	carbon disulfide	17 ug/L.	20	87	70	130		
	methyl t-butyl ether (MTBE)	21 ug/L	20	105	70	130		
	trans-1,2-dichloroethene	20 ug/L	20	102	70	130		
	isopropyl ether (DIPE)	21 ug/L	20	106	70	130		
	ethyl t-butyl ether (ETBE)	22 ug/L	20	108	70	130		
	1,1-dichloroethane	20 ug/L	20	101	70	130		
	t-butanol (TBA)	83 ug/L	100	83	70	130		
	2-butanone (MEK)	17 ug/L	20	84	70	130		
	2.2-dichloropropane	19 ug/L	20	95	70	130		
	cis-1.2-dichloroethene	20 ua/L	20	101	70	130		
	chloroform	20 ua/L	20	98	70	130		
	bromochloromethane	20 µa/L	20	102	70	130		
	tetrahydrofuran (THF)	17 ug/L	20	86	70	130		
	1 1 1-trichloroethane	17 ua/l	20	85	70	130		
	1 1-dichloropropeze	21 ug/l	20	106	70	130		
	t-amvLmethyl ether (TAMF)	16 ug/L	20	82	70	130		
	carbon tetrachloride	16 ug/L	20	82	70	130		
	1 2-dichloroethane	21 ug/L	20	106	70	130		
	henzene	21 ug/L 23 ug/l	20	113	70	130		
	trichloroothono	20 ug/L 21 ug/l	20	104	70	130		
	1.2 dichloropropano	21 ug/L 20 ug/L	20	107	70	130		
	hromodichloromothane	20 ug/L 20 ug/L	20	102	70	130		
		20 ug/L	20 40	81	10	100		
	i,4-dioxaile	< 50 ug/⊾ 20 ug/L	40 20	102	70	120		
	4 methyl 2 posterone (MIRIA)	20 ug/L 16 ug/l	20	70	70	130		
	4-memyi-z-pentanone (MIDK)	10 ug/L	20	79 00	70	130		
	cis-1,3-aichioropropene	to ug/∟ Ω1 ug/l	20	102	70	120		
		∠iug/L 10 ug/L	20	103	70	130		
	trans-1,3-dichloropropene	19 ug/L	20	97	70	130		
	2-nexanone	16 ug/L	20	00 400	70	130		
	1,1,2-trichloroethane	21 ug/L	20	400	70	130		
	1,3-dichloropropane	22 ug/L	20	109	70	130		
	tetrachioroethene	22 ug/L	20	111	70	130		
	dibromochloromethane	16 ug/L	20	82	70	130		
	1,2-dibromoethane (EDB)	18 ug/L	20	91	70	130		
	chlorobenzene	22 ug/L	20	112	70	130		
	1,1,1,2-tetrachloroethane	17 ug/L	20	85	70	130		
	ethylbenzene	23 ug/L	20	113	70 	130		
	m&p-xylenes	43 ug/L	40	106	70	130		
	o-xylene	22 ug/L	20	108	70	130		
	styrene	21 ug/L	20	106	70	130		
	bromoform	19 ug/L	20	97	70	130		
	isopropylbenzene	21 ug/L	20	103	70	130		
	1,1,2,2-tetrachloroethane	21 ug/L	20	103	70	130		

Method	QC ID	Parameter	Associated Sample	Result Units	Amt Added	%R	Li	mit	RPD	RPD Limit
SW5030B820	60B LCS0900247	1,2,3-trichloropropane		23 ug/L	20	114	70	130		
		n-propylbenzene		21 ug/L	20	103	70	130		
		bromobenzene		22 ug/L	20	112	70	130		
		1,3,5-trimethylbenzene		22 ug/L	20	108	70	130		
		2-chlorotoluene		21 ug/L	20	107	70	130		
		4-chlorotoluene		22 ug/L	20	110	70	130		
		tert-butylbenzene		19 ug/L	20	94	70	130		
		1,2,4-trimethylbenzene		21 ug/L	20	105	70	130		
		sec-butylbenzene		20 ug/L	20	100	70	130		
		1,3-dichlorobenzene		23 ug/L	20	115	70	130		
		4-isopropyltoluene		21 ug/L	20	105	70	130		
		1,4-dichlorobenzene		22 ug/L	20	112	70	130		
		1,2-dichlorobenzene		21 ug/L	20	105	70	130		
		n-butylbenzene		20 ug/L	20	100	70	130		
		1,2-dibromo-3-chloropropan	е	20 ug/L	20	100	70	130		
		1,2,4-trichlorobenzene		18 ug/L	20	91	70	130		
		1,3,5-trichlorobenzene		21 ug/L	20	103	70	130		
		hexachlorobutadiene		20 ug/L	20	102	70	130		
		naphthalene		23 ug/L	20	117	70	130		
		1,2,3-trichlorobenzene		20 ug/L	20	102	70	130		
		dibromofluoromethane SUR		96 %			78	114		
		toluene-D8 SUR		102 %			88	110		
		4-bromofluorobenzene SUR		105 %			86	115		

.

Method QC ID	Parameter Associated Sample	e Result Units	Amt Added	%R	Limit	RPD	RPD Limit
SW5030B8260B LCSD0900247	dichlorodifluoromethane	20 ug/L	20	98	70 130	5	20
	chloromethane	18 ug/L	20	89	70 130	18	20
	vinyl chloride	18 ug/L	20	90	70 130	2	20
	bromomethane	25 ug/L	20	125	70 130	8	20
	chloroethane	21 ug/L	20	107	70 130	16	20
	trichlorofluoromethane	20 ug/L	20	102	70 130	3	20
	diethyl ether	21 ug/L	20	106	70 130	0	20
	acetone	19 ug/L	20	96	70 130	4	20
	1,1-dichloroethene	20 ug/L	20	100	70 130	D	20
	methylene chloride	22 ug/L	20	110	70 130	4	20
	carbon disulfide	18 ug/L	20	88	70 130	1	20
	methyl t-butyl ether (MTBE)	21 ug/L	20	105	70 130	0	20
	trans-1,2-dichloroethene	21 ug/L	20	103	70 130	1	20
	isopropyl ether (DIPE)	21 ug/L	20	107	70 130	1	20
	ethyl t-butyl ether (ETBE)	23 ug/L	20	113	70 130	5	20
	1,1-dichloroethane	20 ug/L	20	99	70 130	2	20
	t-butanol (TBA)	84 ug/L	100	84	70 130	2	20
	2-butanone (MEK)	17 ug/L	20	83	70 130	2	20
	2,2-dichloropropane	20 ug/L	20	102	70 130	7	20
	cis-1,2-dichloroethene	21 ug/L	20	103	70 130	2	20
	chloroform	20 ug/L	20	98	70 130	0	20
	bromochloromethane	21 ug/L	20	103	70 130	1	20
	tetrahydrofuran (THF)	18 ug/L	20	88	70 130	2	20
	1,1,1-trichloroethane	18 ug/L	20	90	70 130	6	20
	1,1-dichloropropene	21 ug/L	20	106	70 130	0	20
	t-amyl-methyl ether (TAME)	17 ug/L	20	86	70 130	5	20
	carbon tetrachloride	18 ug/L	20	88	70 130	7	20
	1,2-dichloroethane	21 ug/L	20	106	70 130	0	20
	benzene	23 ug/L	20	113	70 130	0	20
	trichloroethene	21 ug/L	20	105	70 130	1	20
	1,2-dichloropropane	21 ug/L	20	105	70 130	2	20
	bromodichloromethane	20 ug/L	20	102	70 130	2	20
	1,4-dioxane	< 50 ug/L	40	83		2	20
	dibromomethane	20 ug/L	20	101	70 130	0	20
	4-methyl-2-pentanone (MIBK)	16 ug/L	20	79	70 130	0	20
	cis-1,3-dichloropropene	18 ug/L	20	92	70 130	5	20
	toluene	21 ug/L	20	103	70 130	0	20
	trans-1,3-dichloropropene	20 ug/L	20	102	70 130	6	20
	2-hexanone	17 ug/L	20	85	70 130	3	20
	1,1,2-trichloroethane	21 ug/L	20	105	70 130	1	20
	1,3-dichloropropane	22 ug/L	20	109	70 130	0	20
	tetrachloroethene	23 ug/L	20	115	70 130	4	20
	dibromochloromethane	17 ug/L	20	86	70 130	6	20
	1,2-dibromoethane (EDB)	19 ug/L	20	97	70 130	6	20
	chlorobenzene	23 ug/L	20	115	70 130	2	20
	1,1,1,2-tetrachloroethane	18 ug/L	20	90	70 130	6	20
	ethylbenzene	23 ug/L	20	114	70 130	1	20
	m&p-xylenes	43 ug/L	40	108	70 130	1	20
	o-xylene	22 ug/L	20	109	70 130	1	20
	styrene	22 ug/L	20	108	70 130	1	20
	bromoform	20 ug/L	20	100	70 130	3	20
	isopropylbenzene	21 ug/L	20	103	70 130	0	20
	1,1,2,2-tetrachloroethane	21 ug/L	20	103	70 130	1	20

Method	QC ID	Parameter	Associated Sample	Result Units	Amt Added	%R	Li	imit –	RPD	RPD Limit
SW5030B826	50B LCSD0900247	1,2,3-trichloropropane		22 ug/L	20	111	70	130	2	20
		n-propylbenzene		21 ug/L	20	105	70	130	2	20
		bromobenzene		23 ug/L	20	113	70	130	0	20
		1,3,5-trimethylbenzene		22 ug/L	20	111	70	130	3	20
		2-chlorotoluene		22 ug/L	20	111	70	130	3	20
		4-chlorotoluene		22 ug/L	20	108	70	130	2	20
		tert-butylbenzene		20 ug/L	20	100	70	130	6	20
		1,2,4-trimethylbenzene		22 ug/L	20	108	70	130	2	20
		sec-butylbenzene		21 ug/L.	20	103	70	130	4	20
		1,3-dichlorobenzene		23 ug/L	20	117	70	130	2	20
		4-isopropyltoluene		22 ug/L	20	109	70	130	4	20
		1,4-dichlorobenzene		23 ug/L	20	114	70	130	1	20
		1,2-dichlorobenzene		21 ug/L	20	107	70	130	2	20
		n-butylbenzene		21 ug/L	20	103	70	130	3	20
		1,2-dibromo-3-chloropropan	ė	23 ug/L	20	114	70	130	14	20
		1,2,4-trichlorobenzene		17 ug/L	20	86	70	130	6	20
		1,3,5-trichlorobenzene		21 ug/L	20	104	70	130	2	20
		hexachlorobutadiene		22 ug/L	20	109	70	130	6	20
		naphthalene		22 ug/L	20	112	70	130	4	20
		1,2,3-trichlorobenzene		19 ug/L	20	97	70	130	4	20
		dibromofluoromethane SUR	R	96 %			78	114		
		toluene-D8 SUR		101 %			88	110		
		4-bromofluorobenzene SUR	१	103 %			86	115		

ţ

Method	QC ID	Parameter	Associated Sample	Res	sult Units	Amt Added	%R	Li	nit	RPD	RPD Limit
SW3510B82700	: BLK1976	naphthalene		<	0.5 ug/L						
		2-methylnaphthalene		<	0.5 ug/L						
		acenaphthylene		<	0.5 ug/L						
		acenaphthene		<	0.5 ug/L						
		dibenzofuran		<	0.5 ug/L						
		fluorene		<	0.5 ug/L						
		phenanthrene		<	0.5 ug/L						
		anthracene		<	0.5 ug/L						
		fluoranthene		<	0.5 ug/L						
		pyrene		<	0.5 ug/L						
		benzo(a)anthracene		<	0.5 ug/L						
		chrysene		<	0.5 ug/L						
		benzo(b)fluoranthene		<	0.5 ug/L						
		benzo(k)fluoranthene		<	0.5 ug/L						
		benzo(a)pyrene		<	0.2 ug/L						
		indeno(1,2,3-cd)pyrene		<	0.5 ug/L						
		dibenzo(a,h)anthracene		<	0.5 ug/L						
		benzo(g,h,i)perylene		<	0.5 ug/L						
		2-fluorobiphenyl SUR			57 %			43	116		
		o-terphenyl SUR			70 %			33	141		
	LCS1976	naphthalene			21 ug/L	40	52	40	140		
		2-methylnaphthalene			21 ug/L	40	52	40	140		
		acenaphthylene			24 ug/L	40	60	40	140		
		acenaphthene			23 ug/L	40	58	40	140		
		dibenzofuran		<	0.5 ug/L						
		fluorene			25 ug/L	40	62	40	140		
		phenanthrene			25 ug/L	40	63	40	140		
		anthracene			24 ug/L	40	61	40	140		
		fluoranthene			26 ug/L	40	65	40	140		
		pyrene			29 ug/L	40	73	40	140		
		benzo(a)anthracene			29 ug/L	40	71	40	140		
		chrysene			28 ug/L	40	70	40	140		
		benzo(b)fluoranthene			29 ug/L	40	72	40	140		
		benzo(k)fluoranthene			24 ug/L	40	61	40	140		
		benzo(a)pyrene			25 ug/L	40	64	40	140		
		indeno(1,2,3-cd)pyrene			22 ug/L	40	56	40	140		
		dibenzo(a,h)anthracene			25 ug/L	40	62	40	140		
		benzo(g,h,i)perylene			28 ug/L	40	71	40	140		
		2-fluorobiphenyl SUR			57 %			43	116		
		o-terphenyl SUR			70 %			33	141		

Method	QC ID	Parameter	Associated Sample	Result Units	Amt Added	%R	Li	mit	RPD	RPD Limit
SW3510B8270C	LCSD1976	naphthalene		23 ug/L	40	56	40	140	8	20
		2-methylnaphthalene		22 ug/L	40	56	40	140	7	20
		acenaphthylene		26 ug/L	40	65	40	140	9	20
		acenaphthene		24 ug/L	40	61	40	140	5	20
		dibenzofuran		< 0.5 ug/L						20
		fluorene		26 ug/L	40	66	40	140	7	20
		phenanthrene		26 ug/L	40	65	40	140	2	20
		anthracene		25 ug/L	40	64	40	140	4	20
		fluoranthene		26 ug/L	40	64	40	140	0	20
		pyrene		29 ug/L	40	74	40	140	0	20
		benzo(a)anthracene		28 ug/L	40	71	40	140	1	20
		chrysene		28 ug/L	40	71	40	140	2	20
		benzo(b)fluoranthene		28 ug/L	40	69	40	140	3	20
		benzo(k)fluoranthene		25 ug/L	40	62	40	140	2	20
		benzo(a)pyrene		25 ug/L	40	62	40	140	2	20
		indeno(1,2,3-cd)pyrene		22 ug/L	40	56	40	140	1	20
		dibenzo(a,h)anthracene		24 ug/L	40	61	40	140	2	20
		benzo(g,h,i)perylene		28 ug/L	40	70	40	140	1	20
		2-fluorobiphenyl SUR		59 ⁻ %			43	116		
		o-terphenyl SUR		66 %			33	141		

!

Lab Number 16048	METALS	QC REPORT
Batch QC Results		Water

Prep Blank

Sample ID #	Result (mg/L)	Reporting Limit (mg/L)
Gampie in "	((
ICB020309	< 0.007	0.007
ICB020309	< 0.008	0.008
ICB020309	< 0.05	0.05
ICB020309	< 0.005	0.005
ICB020309	< 0.05	0.05
ICB020309	< 0.008	0.008
ICB020309	< 0.05	0.05
	Sample ID # ICB020309 ICB020309 ICB020309 ICB020309 ICB020309 ICB020309 ICB020309	Result Sample ID # (mg/L) ICB020309 < 0.007

Laboratory Control Sample

		Result	True	Control Limits
Analyte	Sample ID #	(mg/L)	Value (mg/L)	(85-115%)
Silver	ICV020309	0.25	0.25	99
Arsenic	ICV020309	0.51	0.5	103
Barium	ICV020309	0.50	0.5	100
Cadmium	ICV020309	0.50	0.5	101
Chromium	ICV020309	0.49	0.5	98
Lead	ICV020309	0.50	0.5	100
Selenium	ICV020309	0.51	0.5	102

Sample Spike Data (MS)

		Sample Result	Spike Sample Result	Spike Amount	%Recovery Control Limits
Analyte	Sample ID #	(mg/L)	(mg/L)	(mg/L)	(75-125%)
Silver	16048-01MS	< 0.45	0.45	0.5	91
Arsenic	16048-01MS	< 1. 1	1.1	1.0	105
Barium	16048-01MS	< 0.99	0.99	1.0	98
Cadmium	16048-01MS	< 1.0	1.0	1.0	101
Chromium	16048-01MS	< 1	1.0	1.0	100
Lead	16048-01MS	< 1	1.0	1.0	100
Selenium	16048-01MS	< 1.1	1.1	1.0	106

%Recovery

•

K	124 Pho	Herita	age A 13-43	Aveni 6-20	ue • 01 •	Por Fa:	tsmo x: 60	outh,)3-43	NH 0-21	038(100	01					Ĺ		1/1/	<i>۱۲۲</i>	510	, ,,,	- 670		Ve	e	aéo	mi	16	<u>ა</u> ს	40	5		
Company Na Louis Ba Company Ad Company Ad Company Ad Company Ad Advicetes Report To: [] Phone #: 603	Ime: CALER G dress: ST. SUIT TIR NH DONALD DONALD DONALD	ROUP 203 03101 KIRKU 3600	Fax	<u>AZ</u> 38 <u>MA</u> *- (#: 60	A o t GZF	+4 x 575x 7 6 Z4	194	RD 0310		rojec VH rojec rojec rojec rotoc eport imits:	t Nan ∄ ∿(t t #: ' f , O ^t t Loc: ting f #	ne: f d ation: RCF MCF EPA	ETER 13 4. Ronor 843, 6 NH MA A SDV DW Othe DW Othe	っぺっ こく ME VT ME VT MES OTI 1 S-1	Other DES HER	C 8260 NHDES	BTEX II MIBE, ONLY DEV COT IT FRANCY MERRI II CRO ROTS	00 524.2 NH List	5 🗆 MEDRO 🗆 EPH MADEP 🗆 TPH Fingerprint	0ABN 🗆 625 🗖 EDB 504.1	51 Pesticides 🗆 608 Pest/PCB	Conductivity D Turbidity	TS 🗆 Atkalinity	Priority Pollutant Metals 🗆 TAL Metals	2		Phenol	de 🗀 Nitrate + Nitrite 🗂 Ortho P	🗆 Chloride 🗆 Sulfate 🗆 Bromide 🗍 Fluoride	active CN 🗆 Reactive S- 🗆 Ignitibility/FP	i ucr vuu la latravuu la luur resulaue 11 Eisin Size 1170: P Herbicides	N SPECIA INSTRUCTIONS	
Lab Sample ID (Lab Use Only)	Fiel ID	ld	# CONTAINERS	WATER	/latr i	OTHER X	Pro Pro	eser [©] ONH	rvati	NaOH	Meth HO®W	OTHER DOL (Specify) DOL	DATE	mpling	SAMPLER*	ALUCE BEER X VOC			🗆 TPH 🗆 DRO 8015	X 8270PAH [] 8270	□ 8082 PCB □ 808 □ 012 1464 □ Mii			🗆 RCRA Metals 🗇 F	Total Metals-list	💢 Dissolved Metals-Ii — Ammonia — COC	🗆 T-Phosphorus 🛛	🗆 Cyanide 🗆 Sulfid	🗆 Nitrate 🗆 Nitrite	Corrosivity C Re	Subconiract: D TOC	522 NOTE 1	
140480 102 103 104 105 104 105 104 105 104 105 104 105 104 104 104 104 104 104 104 104 104 104	MW- MW-3 MW-2 MW-2 MW-2 RW-2 MW-2 RW-2 RW-2 RW-2 RW-2 RW-2 RW-2 RW-2 R	Z DUP) H SlAnK Slowk	44444	XXXXXX			$\mathbb{X}_{\mathbb{X}} \times \mathbb{X}_{\mathbb{X}} \times \mathbb{X}$	X X X X X X X X X X X					1/29/09 1/29/09 1/29/09 1/29/09 1/29/09 1/29/09 1/29/09	13:40 11:40 12:25 12:30 12:10 12:10 12:10 12:10	 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49: 49:	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX				XXXXXXX	<^	1/A										X	
TAT REQU Priority (24 hr)	JESTED **	* See sar	e ww	w.res	slabs	s.con	n for olicy		SP Mh	ECI/		ISTR	UCTION:	5 J CN L	.1772	٤	HA	103	1	N	В	577	٤,	ĹĂ	ß	70 (C Hi	ÉC.K.	- F	nes	Favr	77000	p
Expedited (48 Standard (10 Business Da **Date Needer	hr)** ys) d	REP	ORT OF (e- uishe	ING -mail	accre INST addre Sam	editai FRU(ess) pler:		NS NS	Ľ.r.		- <i>Ua</i>) haf 10 C	<u>Idad</u> RD CC <u>2 GZ</u>	DPY REQU CA. Com	JIRED	3 (~ Tir @@	FAX HER ne 37	(speci	(/3C □ EX fy) _1 ceive	109 CEL ^Sq d by:	spri	EADS 875	el.	t nis l	je ge	?r, (om	F 7	RECE) ON TUR Da	ICE E		3 □ Time
CUST	ody Drd	Relinq Relinq	uishe	ed by:									Da	ite	Tir	ne ne	Re	ceive	d by d by	Labo	rator	/ /	_	7					+	Da	te		Time

- -

..