Waste Management Division
 PO Box 95, 29 Hazen Drive
 Concord, NH 03302

Type of Submittal (Check One-Most Applicable)


```
Preliminary Environmental Assessment New Hampshire Army National Guard Armory Peterborough, New Hampshire
NHDES No. 199001027
UST Facility No. 0113328
Leaking Underground Storage Tank
Project Number 20433
```

Prepared For:
Southwest Region Planning Commission
20 Central Square, $2^{\text {nd }}$ Floor
Keene, New Hampshire 03431
(603) 357-0557

Mr. J. B. Mack
Prepared By:
GZA GeoEnvironmental, Inc 380 Harvey Road Manchester, New Hampshire 03103
(603) 232-8753

Mr. Donald N. Kirkland, P.E.
May 12, 2009

Recommended Risk Category (Check One)		
\square 1. Immediate Human Health Risk (Impacted water supply well, etc.)	4. Surface Water Impact 5. No Alternate Water Available/No	7. Alternate Water Available/Low Level Groundwater Contamination (< 1,000 x AGQS)
2. Potential Human Health Risk (Water supply well within 1000' or Site within SWPA)	Existing Wells in Area 6. Alternate Water Available/High	8. No AGQS Violation/No Source Remaining
\square 3. Free Product or Source Hazard	Level Groundwater Contamination $\text { (> } 1,000 \times \text { AGQS) }$	Closure Recommended

PRELIMINARY ENVIRONMENTAL ASSESSMENT NEW HAMPSHIRE ARMY NATIONAL GUARD ARMORY
 25 ELM STREET
 PETERBOROUGH, NEW HAMPSHIRE

PREPARED FOR:

Southwest Region Planning Commission
Keene, New Hampshire

PREPARED BY:

GZA GeoEnvironmental, Inc.
Manchester, New Hampshire

May 2009
File No. 04.0024843.01

May 12, 2009
File No. 04.0024843.01

Mr. J.B. Mack
Southwest Region Planning Commission

380 Harvey Road Manchester New Hampshire 03103-3347 603-623-3600 FAX 603-624-9463 www.gza.com

20 Central Square, Second Floor
Keene, New Hampshire 03431
Re: Preliminary Environmental Assessment
New Hampshire Army National Guard Armory
25 Elm Street (Site)
Peterborough, New Hampshire
Dear Mr. Mack:
GZA GeoEnvironmental, Inc. (GZA) is pleased to submit the attached Preliminary Environmental Assessment report to Southwest Region Planning Commission (SWRPC) for the above-referenced Site. The objective of GZA's investigation was to further evaluate the recognized environmental conditions previously identified in Louis Berger Group's (LBG) Phase I Environmental Site Assessment (ESA) report dated January 2008. ${ }^{1}$ Our work included a building materials survey, subsurface explorations consisting of test pits and the advancement of test borings with groundwater monitoring wells installation, and soil and groundwater quality sampling. This report summarizes the findings of GZA's Preliminary Environmental Assessment and is subject to the Limitations outlined in Appendix A.

We have appreciated the opportunity to work with you on this project. Should you have any questions, please call the undersigned at (603) 623-3600.

Very truly yours,
GZA GEOENVIRONMENTAL, INC.
Dacd Mirllaal
Donald N. Kirkland, P.E.
Project Manager

Michael B. Asselin Consultant/Reviewer

DNK/SRL/MBA:kr
P:\04Jobs $\backslash 04.0024843 .00 \backslash 04.0024843 .01 \backslash$ Report\SWRPCFinal 051209.DOC
Attachment: Preliminary Environmental Assessment

[^0]
TABLE OF CONTENTS

Page
1.0 INTRODUCTION 1
2.0 BACKGROUND SITE INFORMATION 1
2.1 SITE DESCRIPTION 1
2.2 BRIEF SITE HISTORY 2
3.0 SUMMARY OF WORK PERFORMED 2
3.1 BUILDING MATERIALS SURVEY 2
3.2 TEST PIT PROGRAM WITH ADDITIONAL SURFICIAL SOIL SAMPLING 3
3.3 TEST BORINGS WITH MONITORING WELL INSTALLATIONS 5
3.3.1 Test Boring/Well Construction and Soil Sampling Methodology 5
3.3.2 Summary of Test Boring Observations 5
3.4 GROUNDWATER LEVEL MEASUREMENTS 6
3.5 GROUNDWATER SAMPLING 6
3.6 ANALYTICAL RESULTS 6
3.6.1 Soil Analytical Results 6
3.6.2 Groundwater Analytical Results 7
3.7 DATA VALIDATION OF ANALYTICAL RESULTS 8
4.0 FINDINGS AND CONCLUSIONS 8
5.0 RECOMMENDATIONS 9

TABLES

TABLE 1 SUMMARY OF DETECTED COMPOUNDS IN SOIL
TABLE 2 GROUNDWATER ELEVATION DATA
TABLE 3 SUMMARY OF DETECTED COMPOUNDS IN GROUNDWATER
TABLE 4 GROUNDWATER QUALITY SUMMARY

FIGURES

FIGURE 1 LOCUS PLAN
FIGURE 2 SITE AND GROUNDWATER CONTOUR PLAN

APPENDICES

APPENDIX A	LIMITATIONS
APPENDIX B	TEST PIT, TEST BORING AND WELL CONSTRUCTION LOGS
APPENDIX C	BUILDING MATERIALS SURVEY
APPENDIX D	SOIL ANALYTICAL RESULTS
APPENDIX E	GROUNDWATER ANALYTICAL RESULTS

1.0 INTRODUCTION

This report presents the results of a Preliminary Environmental Assessment conducted by GZA GeoEnvironmental, Inc. (GZA) on behalf of the Southwest Region Planning Commission (SWRPC) at the property referred to as the New Hampshire Army National Guard Armory located at 25 Elm Street in Peterborough, New Hampshire (Site). The current Work Scope was based on Louis Berger Group’s (LBG) findings included in their Phase I Environmental Site Assessment (ESA) report dated January 2008 and subsequent discussions with SWRPC and the New Hampshire Department of Environmental Services (NHDES). Investigations at the Site have been conducted as part of a Brownfields grant awarded to SWRPC by U.S. Environmental Protection Agency (EPA) in 2007 for inventory of known and suspected Brownfield sites in the SWRPC's 35 municipalities. The objective of GZA's Work Scope was to further evaluate the recognized environmental conditions previously identified in LBG’s January 2009 ESA of the Site.

Authorization to proceed on this project was granted by SWRPC in accordance with our proposed Work Scope and Budget Estimate dated October 21, 2008. Work associated with this investigation was performed in general accordance with our June 16, 2008 Agreement For Consulting Services with SWRPC.

This report presents GZA's and LBG's field observations, results, and opinions. Our report is subject to modification if GZA or any other party obtains subsequent information. The following is subject to the Limitations presented in Appendix \mathbf{A}.

2.0 BACKGROUND SITE INFORMATION

2.1 SITE DESCRIPTION

LBG's ESA describes the property as "consisting of a cleared area of approximately 3.2 acres in size. The Subject Property is currently owned by the New Hampshire Army National Guard (NHANG) and contains a brick-masonry armory building, a brick masonry motor vehicle storage building, a small Butler steel building, as well as, two storage containers. The Subject Property also contains an area contained within a chain-link fence used for the purposes of storing NHANG vehicles and equipment."
"The Subject Property is identified on Parcel ID U023-025-000 located to the west of Elm Street in the Town of Peterborough, Hillsborough County, New Hampshire. The address of the Subject Property is given as 25 Elm Street. The Subject Property is located in the front of the Town of Peterborough's Highway Garage and to the north of the former Peterborough Ford Mercury (on Route 101). The Subject Property is approximately $1 / 4$ mile south of the Nubanusit River."

Ground cover at the Subject Property consists predominantly of grass, with pavement and gravel driveways around the two buildings. There are no roads currently on the Subject Property. Vehicular access to the Site is via Elm Street at the east side of the property and the property has a number of driveways and parking areas within it. The main drive servicing the Armory Site also serves as the access to the Highway Garage parcel to the west.

2.2 BRIEF SITE HISTORY

LBG's ESA further describes the property as follows: "The only structures located on the premises are the two brick-mortared buildings, one small, as well as, two storage containers. The main armory building appears to be in relatively good repair, having been built in 1955. The motor vehicle storage building, constructed in 1949, was the original armory facility."

LBG identified the following recognized environmental conditions (RECs) (italicized for convenience to the reader) associated with the Subject Property:

1. "Former underground storage tanks ("UST") which undertook subsequent remediation activities."
2. "The site is a small quantity Hazardous Waste Generator ("HWG") with hazardous materials stored on site."
3. "The currently utilized underground storage tank."
4. "A number of side-gradient properties and one upgradient property have had documented releases of oil or hazardous materials that have the potential to migrate via groundwater or the adjacent Nubanusit River wetland complex toward the Subject Property. These include the upgradient parcels at 36 Elm Street and the side-gradient parcels at 145 Dublin Road. The REC's noted with these parcels range from registered Hazardous Waste Generator potential and UST registrations to full site remediation activities in the past and on-going."
5. "The Subject Property contains a number of small debris piles including one containing metal shelving and another with some mortar rubble and cinder block and woody debris remnants. Portions of the site are utilized for the storage and maintenance of military vehicles."

3.0 SUMMARY OF WORK PERFORMED

3.1 BUILDING MATERIALS SURVEY

On November 14, 2008, GZA accompanied a representative of the NHANG to conduct a limited inventory of universal waste within both the Armory Building and Motor Vehicle Storage Building. GZA's inventory can be found in the attached Table 1. GZA's inventory did not include an assessment of asbestos-containing building materials (ACBM) as this was recently completed by RPF Associates, Inc. (RPF) of Northwood New Hampshire in December 2007. Please refer to RPF's February 11, 2008 document (Appendix C) for an assessment of ACBM. ${ }^{2}$ GZA was not provided documentation of asbestos abatement. Our work scope also did not include the collection of samples to be analyzed for lead paint. GZA was not granted access to the roof of either building or any part of the Butler Shed located to the west of the Armory Building. A phone conversation with Eileen Chabot of the NHANG indicated that the contents of the Butler Shed had been removed.

GZA performed a visual assessment of a representative number of light fixtures within the Site buildings for the presence of polychlorinated biphenyl- (PCB-) and di (2-ethyhexyl) phthalate (DEHP-)-containing ballasts. Nearly all ballasts manufactured prior to 1979 contain PCBs. All

[^1]ballasts manufactured after July 1, 1978 which do not contain PCBs are required to be clearly marked "No PCBs." Ballasts not possessing a "No PCBs" label are generally assumed to contain PCBs in concentrations greater than 50 parts per million (ppm).

State solid waste regulations prohibit the disposal of PCB-containing ballasts in landfills. These ballasts must be disposed of at an incineration/recycling facility. Approximately 25 percent of ballasts manufactured after 1979 contain di (2-ethyhexyl) phthalate (DEHP), a regulated substance under the USEPA Superfund regulations. DEHP-contaminated ballasts must be disposed of in the same manner as PCB-contaminated ballasts.

Fluorescent light tubes were observed within the interior of the Site buildings. State regulations prohibit the disposal of mercury-containing devices in landfills due to their mercury content. The preferred option is for the removal and recycling of the bulbs at an approved recycling facility.

Other hazardous materials observed during the survey include high-intensity discharge lighting (mercury, PCB/DEHP), mercury thermostats, equipment oils, and emergency exit sign/light batteries (lead-acid batteries).

3.2 TEST PIT PROGRAM WITH ADDITIONAL SURFICIAL SOIL SAMPLING

On December 29,2008, LBG excavated 12 test pits designated TP-1-SB through TP-12-SB to collect subsurface soil samples and collected four surficial soil samples designated TP-13-SS to TP-16-SS. LBG's excavation program was consistent with that which was outlined in GZA's December 2008 Quality Assurance Project Plan (QAPP). ${ }^{3}$ Excavation was conducted by the Town of Peterborough using a JCB 217S Series S backhoe. Shallow soil samples were also collected by hand from selected locations using a hand auger. The hand auger was decontaminated between surficial sampling locations. Locations of test pit excavations and the shallow soil samples are shown on Figure 2.

Test pit excavation locations were selected based on our understanding of site use to evaluate the following:

TP-1-SB - TP-3-SB	To address potential contamination from the Former Motor Vehicle Storage Building UST
TP-4-SB-TP-6-SB	To address potential contamination associated with subsurface disposal systems connected to floor drains
TP-7-SB - TP-8-SB	To address potential contamination from current UST
TP-9-SB - TP-10-SB	To identify migration from upgradient off-site contamination (36 Elm Street and 145 Dublin Road)
TP-11-SB - TP-12-SB (Surface and Subsurface Sample locations)	
TP-13-SS - TP-16-SS	To identify contamination associated with overseas shipping containers.
	Conducted in areas of observed surface staining and adjacent to small debris piles

Test pits were generally excavated through natural soils until groundwater was encountered. Soil samples were collected within 4 feet below ground surface (bgs) by entering the test pit excavations and using disposable sampling equipment. Samples were collected from test pits at depths below 4 feet below ground surface utilizing the excavator bucket and subsequently collecting samples using disposable sampling equipment. Soil samples were field screened for total volatile organic compounds (VOCs) using a photoionization detector (PID), and visually

[^2]examined for evidence of soil contamination. Based on the results of field screening and our observations, soil samples were submitted Resource Laboratory, LLC of Portsmouth, New Hampshire as follows:

Five soil samples from the following test pit locations (TP-1-SB, TP-4A-SB, TP-7-SB, TP-11-SB, and TP-16-SS) were submitted for analysis of the following:

- Total petroleum hydrocarbons (TPH) within the diesel range by EPA Method 8015 DRO;
- Resource Conservation and Recovery Act Metals (RCRA-8) (arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver);
- VOCs by EPA Method 8260 (NH Full List)
- polycyclic aromatic hydrocarbons (PAHs) by EPA Method 8270.

Selection of soil samples for analytical laboratory analyses considered the results of field screening, as well as sample collection location and depth relative to our understanding of site use. Analytical laboratory analyses included analysis of duplicate samples (TP-11-SB) for quality assurance/quality control (QA/QC) purposes in accordance with the above-referenced QAPP. Soil samples were collected in accordance with applicable NHDES and EPA protocols and were containerized, transported, and analyzed in consideration of applicable NHDES and EPA protocols.

Louis Berger's test pit logs summarizing materials encountered and the results of field screening are included in Appendix B. The results of analytical laboratory analyses of soil samples are summarized in Table 2 and on Figure 2. Resource Laboratory, LLC's analytical laboratory reports are included in Appendix D. The following summarize the results of the subsurface explorations and laboratory analyses:

- LBG describes the general stratigraphy encountered within the test pit excavations as gravel with varying amounts of sand extending to a depth up to eight feet bgs. Below the sand unit, LBG describes the soil as clay, with varying amounts of sand. Fill was observed at TP-8-SB likely from a previous UST closure. Bedrock was not encountered at any test pit location.
- Groundwater was encountered in all test pit locations at depths of between 2.5 feet to 6.5 feet below ground surface.
- The results of PID field screening of soil samples collected from the test pit excavations did not detect VOCs with the sole exception of TP-16-SS which had a PID reading of 55 parts per million. .
- A "septic" odor was observed within TP-1-SB and TP-7-SB.
- \quad Surficial petroleum staining was observed on soil within test pit excavation TP-16-SS. Observations by LBG indicate the spill to be recent and likely attributable to one of the utility trucks parked at the Site during the December 2008 ice storm restoration effort. LBG estimated the spill as likely hydraulic oil with an overall area of one square foot.
- A former leach field was encountered within TP-4-SB, TP-4A-SB, and TP-6-SB. The logs indicate that leach field pipes were pulled apart. GZA notes that the Armory Building and Motor Vehicle Storage Building are connected to municipal sewer.

3.3 TEST BORINGS WITH MONITORING WELL INSTALLATIONS

3.3.1 Test Boring/Well Construction and Soil Sampling Methodology

GZA observed the advancement of four test borings and installation of groundwater monitoring wells within the completed boreholes between January 19 and 23, 2009 by New Hampshire Boring, Inc. of Londonderry, New Hampshire. The borings and groundwater monitoring wells were used to collect groundwater samples and to evaluate the direction of groundwater flow at the Site. Well designations included: MW-1, MW-2, MW-3, and MW-4 as shown on Figure 2. The following includes the rationale for each of the well locations:

MW-1	Downgradient of former leach field and 1,000-gallon
UST	

Test borings were completed using standard hollow stem auger techniques with a truck mounted drill rig and direct push drilling techniques with a GeoProbe ${ }^{\mathrm{TM}}$ mounted rig. Refer to Appendix \boldsymbol{B} for GZA's boring logs. Soil samples were collected at 5 -foot intervals and screened in the field for total VOCs using a PID ${ }^{4}$ to a maximum depth of 10 feet bgs. Refusal was not encountered at any of the test boring locations. ${ }^{5}$ Soil samples collected during the drilling program were not submitted to an analytical laboratory consistent with the approved QAPP.

The test borings were completed with 2 -inch monitoring wells with a protective roadbox and well screens in overburden wells that spanned the water table observed at the time of drilling. Depth to groundwater was initially measured to range between 3.2 feet bgs (MW-1) and 5.2 feet bgs (MW-2). Drill cuttings were backfilled into the borehole as feasible. After the new monitoring wells were completed, the wells were developed using a peristaltic pump in accordance with GZA Standard Operating Procedure (SOP) B-6. Purge water was discharged to the ground surface.

A relative elevation survey of the newly installed monitoring wells was performed by LBG on January 29, 2009 using a previously established benchmark located within the access roadway for the Town of Peterborough Department of Public Works (DPW) garage. Elevations are referenced to the top of the polyvinyl chloride (PVC). The locations of explorations were additionally survey by LBG.

3.3.2 Summary of Test Boring Observations

GZA observed a 4.5 to >11 foot-thick sand stratum immediately below ground surface. Refer to Appendix B for test boring logs. The sand stratum was observed to consist of loose to medium dense, light brown, fine sand with variable amounts of silt. ${ }^{6}$ GZA also observed a gray

[^3]silt layer 4.5 feet bgs at MW-2. ${ }^{5}$ The silt layer is likely a former wetland bed that had been filled during construction of the Armory. GZA identified a fill layer at MW-2 that was described as fine sand with little silt. ${ }^{5}$

Elevated PID measurements were not observed during the drilling program.

3.4 GROUNDWATER LEVEL MEASUREMENTS

GZA obtained an initial round of water level measurements from each of the newly installed groundwater monitoring wells following installation. LBG obtained a second round after aquifer stabilization had occurred to assess on-site groundwater flow directions. Groundwater elevations were measured as depth-to-water using an electronic water level indicator probe. Groundwater elevations were estimated by subtracting the depth-to-groundwater from the surveyed elevation of the top of the PVC casing.

The stabilized depth to groundwater was measured on January 29, 2009 and ranged between 3.4 feet bgs (MW-1) to 5.6 feet bgs (MW-2). Refer to Table 3 for tabularized groundwater elevation data, and Figure 2 for overburden groundwater elevation contours inferred from the January 29, 2009 water level measurements. Based on these data, the predominant groundwater flow direction is to the northwest toward the wetland area west of the Armory building.

3.5 GROUNDWATER SAMPLING

LBG collected groundwater samples from the four new monitoring wells (MW-1 through MW-4) on January 29, 2009. GZA contacted SWRPC for approval to sample each monitoring well prior to the standard two-week stabilization time. GZA expedited groundwater sampling so that results would be available for the Town of Peterborough's Land Use Committee meeting on February 16, 2009. Refer to Figure 2 for well locations. Monitoring wells were purged and sampled using dedicated hand bailers in accordance GZA SOP B-7. A minimum of three well volumes was purged from each monitoring well prior to sampling. Purge water was discharged to the ground surface.

Groundwater samples from each monitoring well were submitted to Resource Analytical laboratory, LLC for analysis of the following:

- RCRA-8 metals;
- VOCs by EPA Method 8260; and
- PAHs by EPA Method 8270 .

Refer to Table 4 for a complete summary of the groundwater samples collected and the analyses performed.

3.6 ANALYTICAL RESULTS

3.6.1 Soil Analytical Results

The laboratory analytical reports for soil samples are provided in Appendix D. Refer to Table 2 for a summary of soil analytical results. Soil data were compared to both the newly adopted Soil Remediation Standards included in Env-Or 600 Contaminated Sites Management. The following summarizes the soil analytical results:

- VOCs, PAHs, and TPH were not detected at TP-1-SB, TP-4A-SB, TP-7-SB, TP-11-SB, and the TP-11-SB duplicate sample;
- TPH and selected VOCs and PAHs were detected above laboratory reporting limits at TP-16-SS. This surficial sampling location corresponded to the hydraulic oil spill identified during the test pitting program.
- Benzene (0.9 milligrams per liter [mg / L)), naphthalene ($6.8 \mathrm{mg} / \mathrm{L}$ [VOC analysis] and $8.5 \mathrm{mg} / \mathrm{L}$ [PAH analysis], and TPH ($39,000 \mathrm{mg} / \mathrm{L}$) all exceeded their respective New Hampshire Soil Remediation Standards outlined in Env-Or 600.
- Arsenic, barium, cadmium, chromium, lead, mercury, and silver were detected at one or more sampling locations in excess of laboratory reporting limits.
- Arsenic ($13 \mathrm{mg} / \mathrm{L} ; 26 \mathrm{mg} / \mathrm{L}$ [Duplicate sample]) exceeded New Hampshire Soil Remediation Standards at TP-11-SB.

3.6.2 Groundwater Analytical Results

The laboratory analytical report for groundwater samples is provided in Appendix D. Refer to Table 4 for a summary of the analytical results. Laboratory analytical data for the groundwater samples was compared to NHDES’ Ambient Groundwater Quality Standards (AGQS) included in Env-Or 600 Contaminated Sites Management, dated July 23, 2008.

The following summarizes the groundwater analytical results:

- VOCs, PAHs and RCRA-8 metals were not detected within the groundwater samples collected from monitoring locations MW-1, MW-2, and MW-3. Additionally, VOCs and RCRA-8 metals were not detected at MW-4 in groundwater.
- \quad Selected PAHs were detected within groundwater collected from MW-4 in excess of laboratory reporting limits. Benzo (a) anthracene (0.8 micrograms per liter [$\mu \mathrm{g} / \mathrm{L}]$), Benzo (b) fluoranthene ($0.8 \mu \mathrm{~g} / \mathrm{L}$), Benzo (k) fluoranthene ($0.7 \mu \mathrm{~g} / \mathrm{L}$), and Benzo (a) Pyrene ($0.9 \mu \mathrm{~g} / \mathrm{L}$) were detected in excess of AGQS. The observed concentrations could potentially be a result of suspended soil particles in the groundwater sample. The sample was not field filtered per instructions from EPA. GZA notes that the turbidity of the sample collected from was $>1,000$ NTU. MW-4 is an upgradient location that previously was used as a storage area for utility poles. GZA notes that the utility poles may be source of the PAHs observed in shallow groundwater.
- Field screening of purge water indicated the following:

	pH	Specific Conductance	Turbidity
Well Name	Standard units	Microsiemens per Centimeter	Nephelometric Turbidity Units
MW-1	7.1	100	$>1,000$
MW-2	7.0	430	770
MW-3	6.2	160	660
MW-4	7.0	290	$>1,000$

3.7 DATA VALIDATION OF ANALYTICAL RESULTS

The Southwest Region Planning Commission determined that data validation was not necessary for this work scope as it would have been completed after the deadline imposed by the Town of Peterborough. Further, it is not foreseen by SWRPC that the quality of the data would be challenged. SWRPC consulted with EPA and NHDES prior to making a determination that data validation was not necessary.

4.0 FINDINGS AND CONCLUSIONS

The findings and conclusions provided below are based on the work conducted as part of this Preliminary Environmental Assessment designed to further evaluate the recognized environmental conditions previously identified in LBG's January 2008 ESA of the Site:

- GZA conducted a limited inventory of universal waste within both the Armory and Motor Vehicle Storage Building. GZA did not collect environmental samples as part of this inventory and, therefore, can not confirm the presence of asbestos or lead paint. GZA did identify light ballasts that possibly contain PCBs. Fluorescent light tubes were observed within the interior of the Site buildings. State regulations prohibit the disposal of mercury-containing devices in landfills due to their mercury content. The preferred option is for the removal and recycling of the bulbs at an approved recycling facility. Other hazardous materials observed during the survey include high-intensity discharge lighting (mercury, PCB/DEHP), mercury thermostats, equipment oils, and emergency exit sign/light batteries (lead-acid batteries).
- LBG describes the general stratigraphy encountered within the test pit excavations as sand or sandy gravel from 1 foot to 4 feet of natural material or fill, dependent on proximity to wetland areas. Fill overlying potentially naturally occurring soils is described by LBG as "coarse sand." Naturally occurring soil adjacent to the wetland areas and beneath the fill as described as "sandy clay." Bedrock was not encountered at any test pit location.
- Groundwater was detected in overburden soils at a depth ranging between 4 and 5.6 feet bgs. Based on the January 29, 2009 groundwater elevation measurements collected by LBG, groundwater is estimated to flow towards the northwest, toward the wetland area.
- \quad Soil quality at TP-16-SS indicated Benzene (0.9 milligrams per liter [mg / L]), naphthalene ($6.8 \mathrm{mg} / \mathrm{L}$ [VOC analysis] and $8.5 \mathrm{mg} / \mathrm{L}$ [PAH analysis], and TPH ($39,000 \mathrm{mg} / \mathrm{L}$) all exceeded their respective New Hampshire Soil Remediation Standards outlined in Env-Or 600. Elevated levels of VOCs and TPH are likely attributable to the hydraulic oil spill observed at this sampling location.
- \quad Arsenic ($13 \mathrm{mg} / \mathrm{L}$) exceeded New Hampshire Soil Remediation Standards at TP-11-SB. It is GZA's opinion that this concentration is likely a background condition consistent with concentrations we have observed throughout New Hampshire.
- Benzo (a) anthracene (0.8 micrograms per liter [$\mu \mathrm{g} / \mathrm{L}$]), Benzo (b) fluoranthene ($0.8 \mu \mathrm{~g} / \mathrm{L}$), Benzo (k) fluoranthene ($0.7 \mu \mathrm{~g} / \mathrm{L}$), and Benzo (a) Pyrene ($0.9 \mu \mathrm{~g} / \mathrm{L}$) were detected in excess of AGQS at MW-4. The observed concentrations could potentially be a result of suspended soil particles in the groundwater sample. The sample was not field filtered per instructions from EPA. GZA notes that the turbidity of the sample
collected from was $>1,000$ NTU. MW-4 is an upgradient location that previously was used as a storage area for utility poles. GZA notes that the utility poles may be source of the PAHs observed in shallow groundwater.

5.0 RECOMMENDATIONS

GZA understands that Site ownership may be transferred from the New Hampshire Army National Guard to the Town of Peterborough. Based on the findings and conclusions presented above, it is GZA's opinion that the following additional work be performed:

- A second round of groundwater quality samples should be collected to confirm current concentrations. PAH samples should be field filtered prior to sample collection to reduce turbidity. Low-level PAH contamination at MW-4 may be attributable to the presence of suspended soil particles within the sample matrix.
- \quad Removal of impacted soil in the immediate vicinity of the hydraulic oil spill at TP-16-SB.
- Completion of a limited Remedial Action Plan for contaminated soil/groundwater in the general vicinity of MW-4. GZA understands that the Town will be able to apply for Brownfield's remediation money after the property has been transferred to the Town of Peterborough. The RAP will likely include recommendations for limited soil removal associated with the hydraulic oil release, and groundwater monitoring consistent with a GMP.
- Collection of surficial soil samples in the general vicinity of MW-4.
- A building materials survey that includes the collection of samples for lead paint and PCBs should be conducted.

TABLES

Table 1

Building Materials Survey
Former New Hampshire National Guard Armory Site Peterborough, New Hampshire

Building	Building Material	Number in Building	Notes
$\begin{aligned} & \text { 曾 } \\ & \text { 首 } \end{aligned}$	Motors: Compactors	1	Roof/Ceiling Motors for HVAC system
	Motors: Gear Oil	1	Roof/Ceiling Motors for HVAC system
	Switch Gear	1	Located in Drill Hall
	Transformers	1	3 pole-mounted across street feeding Armory and Motor Vehicle Storage Building
	HVAC Units	2	Roof/Ceiling located in Drill Hall
	Heaters	1	Oil-fired and wall-mounted
	Window AC Units	3	CFCs
	Fire Suppression: Fire Extinguishers	13	Removed and stored in Drill Hall
	Fire Suppression: Hydraulics	N/A	
	Detectors	2	
	Mercury Thermostats	3	
	Hydraulic Door Closers	14	
	Strobes	N/A	
	Emergency Lights	7	
	Compressors	2	
	Fluorescent Ballasts	41	
	Fluorescent Tubes (4 feet)	83	
	HID Lights: Interior	23	
	HID Lights: Exterior	10	
	Ice Makers	N/A	
	Batteries	12	
	Fire Panel	N/A	
	Kitchen Wall Venting Fan	1	
	Burner	1	Oil-fired with adjacent 275-gallon AST, approximately $1 / 4$ oil left
	20 Gallon Drum	1	Approximately 2 gallons of used oil
	Georgia Pacific Plastic Roof Cement	1	5-gallon can, full
	Exterior Paint Can	1	12-ounce can
	HID Lights	13	
	Fluorescent Light Bulbs (8 feet)	5	
	Fluorescent Light Bulbs (4 feet)	2	
	Ballasts	6	

Notes

GZA was not granted access to either building's roof as part of this survey
2. Lead-based paint on each building is probable. As part of this workscope, GZA did not collect samples for laboratory analyses.
3. For a complete assessment of asbestos containing materials and subsequent abatement activities, please refer to RPF Associates, Inc.'s February 11,2008 letter titled "Peterborough Readiness Center and Motor Vehicle Storage Building," and RPF Associates, Inc.'s August 8, 2008 letter titled "Ambient Area Air Sampling," respectively.

Stockpile Sample ID and Date of Sample Collection	NH Soil Remediation	TP-1-SB (2.5-4.5)	TP-4A-SB (2-3)	TP-7-SB (4.5-6.5)	TP-11-SB (3-4)	$\begin{gathered} \hline \hline \text { TP-11-SB (3-4) } \\ \text { Duplicate } \\ \hline \end{gathered}$	TP-16-SS (0-0.5)	
VOCs by EPA Method 8260B (mg/kg)								
Benzene	0.3	<0.1	<0.1	<0.1	<0.1	<0.1	0.9	
Toluene	100	<0.1	<0.1	<0.1	<0.1	<0.1	13	
Ethylbenzene	140	<0.1	<0.1	<0.1	<0.1	<0.1	11	
mp-Xylene	500	<0.1	<0.1	<0.1	<0.1	<0.1	34	
o-Xylene		<0.1	<0.1	<0.1	<0.1	<0.1	16	
Isopropylbenzene	330	<0.1	<0.1	<0.1	<0.1	<0.1	4.2	
n-Propylbenzene	85	<0.1	<0.1	<0.1	<0.1	<0.1	11	
1,3,5-Trimethylbenzene	96	<0.1	<0.1	<0.1	<0.1	<0.1	17	
1,2,4-Trimethylbenzene	130	<0.1	<0.1	<0.1	<0.1	<0.1	60	
sec-Butylbenzene	130	<0.1	<0.1	<0.1	<0.1	<0.1	7.2	
p-Isopropyltoluene	3,400	<0.1	<0.1	<0.1	<0.1	<0.1	4.1	
Naphthalene	5	<0.6	<0.5	<0.6	<0.7	<0.7	8.5M	
2-Methylnaphthalene	96	<0.6	<0.5	<0.6	<0.7	<0.7	32	
Dibenzofuran	Not Established	<0.6	<0.5	<0.6	<0.7	<0.7	2.4M	
Fluorene	77	<0.6	<0.5	<0.6	<0.7	<0.7	5.5M	
Phenanthrene	960	<0.6	<0.5	<0.6	<0.7	<0.7	4.9M	
Anthracene	1,000	<0.6	<0.5	<0.6	<0.7	<0.7	0.8M	
Fluoranthene	960	<0.6	<0.5	<0.6	<0.7	<0.7	1.1M	
	10,000	<230	<210	<240	<290	<290	39,000	
Eight RCRA Metals EPA Method 6010 (mg/kg)								
Arsenic	11	3.5	3.5	2.4	13	26	5.4	
Barium	1,000	34	42	54	32	34	46	
Cadmium	33	<0.2	0.2	<0.2	<0.2	<0.2	<0.2	
Chromium	1,000	10	5	14	11	12	17	
Lead	400	4.5	2.4	4.1	14	16	18	
Mercury	6	<0.01	<0.01	<0.02	0.04	0.04	<0.02M	
Selenium	180	<2	<2	<2	<2	<2	<2	
Silver	89	<0.3	<0.3	0.3	<0.3	<0.3	0.4	

NOTES:

1. Soil samples were collected by GZA GeoEnvironmental, Inc and submitted to Resource Laboratory, LLC of Portsmouth, New Hampshire for analysis including volatile organic compounds (VOCs) by Environmental Protection Agency (EPA) Method 8260, Semivolatile Organic Compounds (SVOCs) by EPA Method 8270C, total petroleum hydrocarbons (TPH) by EPA Method 8015B (diesel range organics [DRO]), \& the eight Resource Conservation and Recovery Act (RCRA) metals by EPA Method 6010. Results are in milligrams per kilogram ($\mathrm{mg} / \mathrm{kg}$).
2. Bold indicates the compound was detected above the detection limit. Shaded values indicates exceedances of Soil Remediation Standards included in Env-Or 600 .
3. "<" indicates that the parameter was not detected above the reporting limit.
4. "M" indicates the concentration reported by the laboratory should be qualified due to surrogate recovery exceeding acceptance criteria.

Table 3

Groundwater Elevation Summary

New Hampshire Army National Guard Armory
Peterborough, New Hampshire

Date	GROUNDWATER (Depth/Elevation [feet])							
	Monitoring Location							
	MW-1		MW-2		MW-3		MW-4	
	Reference Elevation (feet)							
	793.22		793.98		793.58		795.84	
	Depth to Water	Elevation						
1/29/2009	3.4	789.8	5.6	788.4	4.48	789.1	4.62	791.2

NOTES:

1. Depth-to-groundwater measurements made by Louis Berger Group (LBG) on the dates indicated.
2. The reference elevation for each well is the top of the polyvinyl chloride riser pipe.
3. Elevations are reported in feet and are based on an elevation survey conducted by LBG on January 19, 2009.

The elevation for each well was measured using optical survey techniques and was referenced a previous survey conducted by LBG.

Compound	$\begin{gathered} \hline \hline \text { NH AGQS Env- } \\ \text { Or 600 Table } \\ 600-1 \end{gathered}$	MW-1	MW-2	MW-3	MW-3 DUP	MW-4
VOCs by EPA Method 8260B ($\mu \mathrm{g} / \mathrm{L}$)						
Not Detected		ND	ND	ND	ND	ND
PAHs by EPA Method 8270C ($\mu \mathrm{g} / \mathrm{L}$)						
Phenanthrene	210	<0.5	<0.5	<0.5	<0.5	1.0
Fluoranthene	280	<0.5	<0.5	<0.5	<0.5	1.6
Pyrene	210	<0.5	<0.5	<0.5	<0.5	1.9
Benzo(a)anthracene	0.1	<0.5	<0.5	<0.5	<0.5	0.8
Chrysene	5.0	<0.5	<0.5	<0.5	<0.5	1.0
Benzo(b)fluoranthene	0.1	<0.5	<0.5	<0.5	<0.5	0.8
Benzo(k)fluoranthene	0.5	<0.5	<0.5	<0.5	<0.5	0.7
Benzo(a)pyrene	0.2	<0.2	<0.2	<0.2	<0.2	0.9
RCRA 8 Metals by EPA Method 6020/200.8(mg/L)						
Not Detected		ND	ND	ND	ND	ND

NOTES:

1. Groundwater samples were collected by Louis Berger Group and submitted to Resource Laboratory, LLC of Portsmouth, New Hampshire for analysis including volatile organic compounds (VOCs) by Environmental Protection Agency (EPA) Method 8260B, Polynuclear Aromatic Hydrocarbons (PAHs) by EPA Method 8270C, and the eight Resource Conservation and Recovery Act (RCRA) metals by EPA Method 6010.
2. Bold indicates the compound was detected above the detection limit. Shaded values indicates exceedances of the Ambient Groundwater Quality Standards (AGQS) included in Env-Or 600
3. " $<$ " indicates that the parameter was not detected above the reporting limit. "ND" indicates parameters within the method were not detected above laboratory reporting limits.

FIGURES

APPENDIX A

LIMITATIONS

GEOHYDROLOGICAL LIMITATIONS

1. The conclusions and recommendations submitted in this report are based in part upon the data obtained from a limited number of soil samples from widely spaced subsurface explorations. The nature and extent of variations between these explorations may not become evident until further investigation. If variations or other latent conditions then appear evident, it will be necessary to reevaluate the recommendations of this report.
2. The generalized soil profile described in the text is intended to convey trends in subsurface conditions. The boundaries between strata are approximate and idealized and have been developed by interpretations of widely spaced explorations and samples; actual soil transitions are probably more gradual. For specific information, refer to the boring logs.
3. Water level readings have been made in observation wells at times and under conditions stated on the exploration logs. These data have been reviewed and interpretations have been made in the text of this report. However, it must be noted that fluctuations in the level of the groundwater may occur due to variations in rainfall and other factors different from those prevailing at the time measurements were made.
4. Chemical analyses have been conducted by an outside laboratory. GZA GeoEnvironmental, Inc. (GZA) has relied upon the data provided.
5. The conclusions and recommendations contained in this report are based in part upon various types of chemical data and are contingent upon their validity. These data have been reviewed and interpretations made in the report. Moreover, it should be noted that variations in the types and concentrations of contaminants and variations in their flow paths may occur due to seasonal water table fluctuations, past disposal practices, the passage of time, and other factors. Should additional chemical data become available in the future, these data should be reviewed by GZA, and the conclusions and recommendations presented therein modified accordingly.
6. Chemical analyses have been performed for specific parameters during the course of this study, as detailed in the text. It must be noted that additional constituents not searched for during the current study may be present in soil and groundwater at the Site.
7. It is recommended that this firm be retained to provide further engineering services during design, implementation, and/or construction of any remedial measures, if necessary. This is to observe compliance with the concepts and recommendations contained herein and to allow design changes in the event that subsurface conditions differ from those anticipated.

APPENDIX B

TEST PIT, TEST BORING AND WELL CONSTRUCTION LOGS

\square	The Louis Berger Group, Inc.	SAMPLE LOG		Test Pit No: Surface Samples
Project: NH Army National Guard Armory				Project Number: 24843.01C
Location: Peterborough, NH				Location: See Site Plan
Client: Southwest Regional Planning Commission				Approx. Ground Elev.: --
Contractor:				Date: December 29, 2008
Equipment:				Inspector: Robert J. Saunders, PE
SAMPLE	Location:	\qquad	PID (ppmV)	SAMPLE ID
$\left\lvert\, \begin{array}{\|\|c\|} \text { TP-11-SS } \\ \text { TP-12-SS } \\ \text { TP-13-SS } \\ \text { TP-14-SS } \\ \text { TP-15-SS } \\ \text { TP-16-SS } \end{array}\right.$	West of Armory, Near TP-11 West of Armory, Near TP-12 Front of Site, NW of TP-9 SE of MV Building Inside Paddock, East of MV East of UST, Near TP-8	Gravel drive Gravel drive Gravel drive Stone Chip Stone Chip OM, Topsoil	$\begin{gathered} 2 \\ 0 \\ 0 \\ 2 \\ 0 \\ 55 \end{gathered}$	$\begin{aligned} & 11-S S\left(0^{\prime}-0.5^{\prime}\right) \\ & 12-S S\left(0^{\prime}-0.5^{\prime}\right) \\ & 14-S S\left(0^{\prime}-0.5^{\prime}\right) \\ & 15-S S\left(0^{\prime}-0.5^{\prime}\right) \\ & 16-S S\left(0^{\prime}-0.5^{\prime}\right) \end{aligned}$

APPENDIX C

BUILDING MATERIALS SURVEY

February 11, 2008
Andrew Filiault
NH Adjutant General's Department
4 Pembroke Road
NHAG-FM
Concord, NH 03301
Re: Peterborough Readiness Center and Motor Vehicle Storage Building Survey Findings
RPF File 07.2707
Dear Mr. Filiault:
On December 13, 2007, RPF Associates, Inc. (RPF) conducted a survey at the Peterborough Readiness Center and Motor Vehicle (MV) Storage Buildings located at 25 Elm Street, Peterborough, NH. The survey was performed throughout the interior of each building for accessible asbestos-containing building material (ACBM). The survey was conducted in accordance with current State and federal rules and regulations. Below is a summary of findings, discussion of the results and methodology, and preliminary recommendations for proper management of the ACBM.

Summary of Findings

RPF inspectors surveyed accessible building space within the interior of the buildings in accordance with the initial asbestos inspection requirements prior to renovation or demolition work as stated in the NH Administrative Rule Env-A 1800 and other applicable federal regulations.

Several types of suspect ACBM were observed by RPF, including friable and nonfriable suspect material. Sampling of the suspect material observed was performed to the extent indicated herein and asbestos was detected in the following materials: pipe and fitting insulation, floor tile, flooring mastic, and window putty.

Depending on the extent of renovation and final construction plans, proper abatement and/or management of the materials may be required in accordance with applicable State and federal regulations. Renovation and demolition plans should be reviewed by a certified industrial hygienist and a licensed project designer for possible asbestos impact issues. Based on the impact assessment and planned usage, technical specifications should be prepared for abatement, as applicable. Design work may also entail further site survey work for confirmation and to address project specifics.

Asbestos-Containing Building Material
Thirty-one (31) homogeneous groups of accessible suspected asbestos-containing building material were identified in the areas surveyed. Suspect materials were identified based on current industry standards, EPA, and other guideline listings of potential suspect ACBM. A total of seventy-six (76) samples were extracted from the different groups of suspect material in accordance with EPA sampling protocols. Of the samples collected by RPF, asbestos was detected in six (6) groups of suspect ACBM within the Readiness Center building. A list of ACBM identified in the building, EPA category listings, and asbestos content is included as Appendix A.

A listing of the suspect materials identified that were sampled during this survey, samples extracted, and analytical results are included in Appendix B. The ACBM identified during this survey consisted of friable and nonfriable material. The nonfriable ACBM was observed to be in good to fair condition and, left undisturbed and properly managed, is unlikely to cause any major fiber release episodes. The friable ACBM pipe insulation was observed to be in fair condition with exposed edges. Care should be used to prevent damage to these exposed edges as a minimum and wrapping these ends with wettable wrap should be considered as further protection.

It is reasonable to assume that, in buildings of this construction period and based on the findings for accessible space, some inaccessible ACBM may be present within wall, floor and ceiling space. For example, wall chase areas may have ACBM pipe insulation or electric wire wrap. Another example is possible multiple layers of flooring or felt papers. Further destructive testing can be performed when feasible, during specification design work, or in conjunction with demolition activity as requested by you and based on the site conditions.

As previously reviewed with you, the exterior roofing components of these buildings were not included in the scope of this survey and sampling was not performed in order not to damage roofing integrity at this time. As such, the suspect roofing materials should be assumed to be ACBM for the purposes of this inspection. When feasible and prior to demolition or disturbance, the roofing components and systems should be tested, including representative core samples and analysis of the different suspect materials, in order to determine asbestos content.

Materials encountered at the site subsequent to this survey, which are not included on the enclosed listings of suspect material sampled or ACBM inventories, should be assumed to be ACBM until proper testing proves otherwise (for example prior to any disturbance due to maintenance, renovation or demolition activity). Please notify RPF in this event to arrange for proper testing and assessments.

In accordance with current regulatory requirements, ACBM that may be impacted or disturbed (such that asbestos fiber release occurs) by renovation, demolition or other such activity must be removed by qualified, licensed firms. ACBM that will not be impacted by renovation or demolition activity may be left in place if managed properly and if the materials are maintained in good condition. The damaged ACBM insulation should be cleaned, repaired and/or removed at a minimum and based on planned usage. Although regulations for removal of nonfriable ACBM are somewhat less stringent than the requirements for friable ACBM, it should be noted that nonfriable ACBM that is subjected
to grinding, abrasion, and other forces, could be rendered friable. In this event, the nonfriable ACBM would be re-categorized friable ACBM.

Asbestos removal is highly regulated at the State and federal level, and in some cases, at the local level also. Notification to NH Air Resources is required 10-days prior to the start of abatement work and demolition. RPF recommends that only qualified, trained, and licensed firms, as applicable, be engaged to complete asbestos removal or other abatement activity. Asbestos abatement work must be designed (abatement specifications prepared) by accredited, licensed personnel. For project design, contingencies for possible hidden ACBM should be included and further explorative survey work may be prudent, depending on the extent of planned renovation and demolition.

All employees and contractors that may access or otherwise disturb areas with ACBM or suspect ACBM present should be notified of the presence of $A C B M$ and possible hidden $A C B M$, and the need to use caution when proceeding with work. Appropriate notifications and hazard communications should be completed to all employees, contractors and others in accordance with US OSHA regulations and other applicable requirements (including asbestos labeling in accordance with 29 CFR Part 1926).

ACBM labeling requirements should also be addressed in accordance with OSHA, 29 CFR 1926.1101. Please note that the scope of RPF's services for this survey did not include labeling of ACBM or hazard communications to other employees, building occupants, contractors, or subcontractors. If you would like any assistance in this matter please call our office. Other O\&M Program related guidelines and recommendations are as indicated in 40 CFR Part 763 (AHERA).

Conclusions

Based on the survey findings, the Readiness Center building was found to contain ACBM. Abatement of the ACBM must be completed prior to renovation or demolition work in accordance with current State and federal requirements. Special attention is also warranted for the exposed edges of the ACBM pipe insulation located throughout the Readiness Center. Sufficiently in advance of the start of renovation, abatement project design should commence. As part the initial design steps, the project designer should review the planned renovation and construction activity for possible impact on ACBM. Any remaining ACBM after construction should be included in the existing management plan to ensure safe occupancy of the building with ACBM present.

Documentation of current ACBM conditions and in-depth hazard assessments is beyond the scope-of-work for this initial survey. With the exception of the specific testing and analysis detailed herein, no other samples of materials, oil, water, ground water, air, or other suspect hazardous materials were collected in the course of this inspection that supports or denies these conclusions. No additional services beyond those explicitly stated herein were performed and none should be inferred or implied. The summary and conclusions are based on reasonably ascertainable information as described in this report. RPF Associates, Inc. makes no guarantees, warranties, or references regarding this property or the condition of the property after the period of this report.

If you have any questions at this time, or if you would like to discuss the project design process, please call our office.

Sincerely,

Allan D. Mercier
Project Manager, Licensed Inspector
Appendix A: Summary of ACBM Identified
Appendix B: ACBM Sampling Results
Appendix C: Example Pictures
Appendix D: General Information
Appendix E: Summary of Methodology and Limitations
07.2707021108 Peterborough Rpt

APPENDIX A

NH ADJUTANT GENERAL
 Peterborough Readiness Center and MV Storage Buildings

SUMMARY OF ACCESSIBLE ACBM IDENTIFIED

Building Material	Location	Approximate Quantity	EPA Category	Asbestos Results
Readiness Center				
Pipe Insulation	Throughout building	1,600 linear feet (If)	Friable ACM	15\% Chrysotile
Fitting Insulation	Throughout building	120 fittings	Friable ACM	45\% Chrysotile
9 "Floor Tile (black)	Front entry corridor, Admin Office, Det. Sgt's Office, Commanders Office	1,252 square feet (sq. ft.)	Category I Nonfriable	8\% Chrysotile
9" Floor Tile (green)	Commanders Office and Class Room with Café	827 sq. ft.	Category I Nonfriable	10\% Chrysotile
Flooring Mastic (black)	Commanders Office and Class Room with Café	827 sq. ft.	Category I Nonfriable	5\% Nonfriable
Interior Window Putty	Throughout building	13 windows @ $21 \mathrm{lf} /$ window	Category II Nonfriable	2\% Chrysotile
	Drill Hall	66 windows @ 31 lf/window		
Motor Vehicle Storage Building				
No Accessible ACBM Present				

Table Notes:

- Appendix D of the report contains further information on the EPA category listings. Please note that Category 1 and Category 2 nonfriable ACM are recategorized as friable and/or RACM under certain conditions. Current State asbestos regulations are more strict and comprehensive than the EPA NESHAPs requirements:
- All quantities are approximate only and should be confirmed during abatement project design and abatement bidding.
- Materials listed as assumed ACBM should be properly testing by an accredited inspector prior to disturbance and when such materials become accessible, or shall be handled as ACBM,
- It is likely that some inaccessible ACBM is present. Care should be used when renovating/demolishing inaccessible building space. Further explorative survey work may be necessary during abatement design and in conjunction with demolition.
- Please reference full text of the report for details on the scope of the inspection and limitations.

APPENDIX B

RPF ASSOCIATES, INC.
Environmental Health \& Safety
Visit us at www. airpf.com
Air Quality Testing
Mold Assessment Industrial Hygiene \& Safety EH\&S Training \& Seminars
Asbestos \& Lead Management

SUMMARY OF BULK MATERIAL SAMPLING AND RESULTS
 Polarized Light Microscopy - EPA 600/R-93/116 Method
 Samples Collected: December 13, 2007

Sample ID	Sample Description	Asbestos Content	Other Content
121307-HG01	Pipe insulation, white, maintenance office, north corner at ceiling	15\% Chrysotile	70\% Cellulose 15% Non-fibrous
121307-HG01B	Pipe insulation, white, men's latrine, center at ceiling	*SFP	*SFP
121307-HG01C	Pipe insulation, white, drill room, southeast wall between maintenance office and class room	*SFP	*SFP
121307-HG02	Fitting insulation, white, maintenance office, north corner at ceiling	45\% Chrysotile	55\% Non-fibrous
121307-HG02B	Fitting insulation, white, kitchen, just inside doorway at ceiling	*SFP	*SFP
$\begin{aligned} & 121307-\mathrm{HG} 03 \\ & \text { Floor Tile } \end{aligned}$	Floor tile, black, corridor in front of Det. Sgt. Office, just outside doorway, left side	8\% Chrysotile	92\% Non-fibrous
$\begin{aligned} & 121307-\mathrm{HG} 03 \\ & \text { Mastic } \\ & \hline \end{aligned}$	Mastic, black, corridor in front of Det. Sgt. Office, just outside doorway, left side	No Asbestos Detected	100\% Non-fibrous
$\begin{aligned} & 121307-\mathrm{HG} 03 \mathrm{~B} \\ & \text { Floor tile } \end{aligned}$	Floor tile, black, Det. Sgt. Office, rear center of office	*SFP	*SFP
$\begin{aligned} & 121307-\mathrm{HG} 03 \mathrm{~B} \\ & \text { Mastic } \end{aligned}$	Mastic, black, Det. Sgt. Office, rear center of office	No Asbestos Detected	100\% Non-fibrous
$\begin{aligned} & 121307-\mathrm{HG} 04 \\ & \text { Floor tile } \end{aligned}$	Floor tile, green, Class Room in café area	10\% Chrysotile	90\% Non-fibrous
$\begin{aligned} & 121307-\mathrm{HG} 04 \\ & \text { Mastic } \\ & \hline \end{aligned}$	Mastic, black, Class Room, in café area	5\% Chrysotile	95\% Non-fibrous
$121307-\mathrm{HG} 04 \mathrm{~B}$ Floor tile	Floor tile, green, Class Room, in café area	*SFP	*SFP
$\begin{aligned} & 121307-\mathrm{HG} 04 \mathrm{~B} \\ & \text { Mastic } \end{aligned}$	Mastic, black, Class Room, in café area	*SFP	*SFP
$121307-\mathrm{HG} 04 \mathrm{C}$ Floor tile	Floor tile, green, Commanders office, south corner by door to latrine	*SFP	*SFP
$\begin{aligned} & 121307-\mathrm{HG} 04 \mathrm{C} \\ & \text { Mastic } \\ & \hline \end{aligned}$	Mastic, black, Commanders office, south corner by door to latrine	*SFP	*SFP
121307-HG05	Interior window putty, white, NCO office, southeast wall, south window	2\% Chrysotile	98\% Non-fibrous
121307-HG05B	Interior window putty, white, supply office, southwest wall, sole window	*SFP	*SFP
121307-HG05C	Interior window putty, white, kitchen, northeast wall, sole window	*SFP	*SFP

- Trace means less than 1%. SFP Means analysis was terminated because asbestos was detected on a previous homogenous sample during the survey work. Please reference the "HG" group number.
- Please reference the full report for discussions and additional information and limitations pertaining to these results.

Page 1 of 4 for the above date and location

RPF ASSOCIATES, INC.
Environmental Health \& Safety
Visit us at www.airpf.com
Air Quality Testing Mold Assessment
Industrial Hygiene \& Safety
EH\&S Training \& Seminars
Asbestos \& Lead Management

NH Adjutant General Peterborough Readiness Center

SUMMARY OF BULK MATERIAL SAMPLING AND RESULTS
 Polarized Light Microscopy - EPA 600/R-93/116 Method Samples Collected: December 13, 2007

Sample ID	Sample Description	Asbestos Content	Other Content
121307-HG06	Formica with adhesive, gray, kitchen countertop, north side of counter	No Asbestos Detected	10\% Cellulose 90% Non-fibrous
121307-HG06B	Formica with adhesive, gray, kitchen, countertop, south side of counter	No Asbestos Detected	10\% Cellulose 90\% Non-fibrous
121307-HG07	Formica with adhesive, red, café service countertop	No Asbestos Detected	10% Cellulose 90% Non-fibrous
121307-HG07B	Formica with adhesive, red, supply, countertop on north side of room	No Asbestos Detected	10\% Cellulose 90\% Non-fibrous
121307-HG08	Formica with adhesive, gray, Admin Office, northwest side of office	No Asbestos Detected	10% Cellulose 90% Non-fibrous
121307-HG08B	Formica with adhesive, gray, Admin Office, northwest side of office	No Asbestos Detected	10% Cellulose 90% Non-fibrous
121307-HG09	Ceramic tile grout, gray, Commanders latrine, floor in southeast corner	No Asbestos Detected	100\% Non-fibrous
121307-HG09B	Ceramic tile grout, gray, men's latrine, floor in front of showers	No Asbestos Detected	100\% Non-fibrous
121307-HGII	Plaster with skim coat, white, men's latrine, front room ceiling	No Asbestos Detected	100\% Non-fibrous
121307-HG11B	Plaster with skim coat, white, women's latrine, ceiling just inside doorway	No Asbestos Detected	100\% Non-fibrous
121307-HG11C	Plaster with skim coat, white, men's latrine, shower room ceiling, center	No Asbestos Detected	100\% Non-fibrous
121307-HG12	Fixed ceiling tiles, $24^{\prime \prime}$, white, maintenance office, ceiling in northwest corner	No Asbestos Detected	80\% Cellulose 20\% Non-fibrous
121307-HG12B	Fixed ceiling tiles, $24^{\prime \prime}$, white, classroom, ceiling in southwest corner	No Asbestos Detected	80% Cellulose 20\% Non-fibrous
121307-HG13	Suspended ceiling tiles, 2×2, white, corridor, approximate center	No Asbestos Detected	25% Cellulose, 45% Mineral Wool, 30\% Non-fibrous
121307-HG13B	Suspended ceiling tiles, 2×2, white, corridor, center of corridor in front of Det. Sgt's Office	No Asbestos Detected	25\% Cellulose, 45% Mineral Wool, 30\% Non-fibrous
121307-HG14	Fixed ceiling tiles, 12 ", white, corridor, approximate center above HG13	No Asbestos Detected	80% Cellulose 20\% Non-fibrous
121307-HG14B	Fixed ceiling tiles, 12 ", white, janitor's closet, west corner	No Asbestos Detected	80\% Cellulose 20\% Non-fibrous
121307-HG15	Paper, black, corridor, ceiling above fixed ceiling tiles, approximate center	No Asbestos Detected	80% Cellulose 20% Non-fibrous

- Trace means less than 1%. SFP Means analysis was terminated because asbestos was detected on a previous homogenous sample during the survey work. Please reference the " HG " group number.
- Please reference the full report for discussions and additional information and limitations pertaining to these results.

Page 2 of 4 for the above date and location

Visit us at www.airpf.com Air Quality Testing Mold Assessment Industrial Hygiene \& Safety EH\&S Training \& Seminars
Asbestos \& Lead Management

SUMMARY OF BULK MATERIAL SAMPLING AND RESULTS
 Polarized Light Microscopy - EPA 600/R-93/116 Method Samples Collected: December 13, 2007

Sample ID	Sample Description	Asbestos Content	Other Content
121307-HG15B	Paper, black, Det. Sgt. Office, ceiling above fixed ceiling tiles, approximate center	No Asbestos Detected	80\% Cellulose 20\% Non-fibrous
121307-HG16	Gypsum, white, NCO office, northwest wall, right corner	No Asbestos Detected	90\% Cellulose 10\% Non-fibrous
121307-HG16B	Gypsum, white, NCO office, northwest wall, west corner	No Asbestos Detected	90\% Cellulose 10% Non-fibrous
121307-HG16C	Gypsum, white, NCO office, northwest wall, north corner	No Asbestos Detected	90% Cellulose 10% Non-fibrous
121307-HG17	Skim coat, white, maintenance office, southeast wall, lower left corner	No Asbestos Detected	100\% Non-fibrous
121307-HG17B	Skim coat, white, maintenance office, southeast wall, lower left corner	No Asbestos Detected	100\% Non-fibrous
121307-HG17C	Skim coat, white, maintenance office, southeast wall, lower right corner	No Asbestos Detected	100\% Non-fibrous
121307-HG18	Covebase mastic, yellow, corridor, near building entrance door, lower right side	No Asbestos Detected	100\% Non-fibrous
121307-HG18B	Covebase mastic, yellow, corridor, near Det. Sgt's Office doorway, lower left side	No Asbestos Detected	100\% Non-fibrous
121307-HG19	Tectam board, tan, supply room, ceiling just inside entry door	No Asbestos Detected	80\% Cellulose 20\% Non-fibrous
121307-HG19B	Tectam board, tan, supply room, ceiling near vault door	No Asbestos Detected	80\% Cellulose 20\% Non-fibrous
121307-HG20	Pipe insulation, brown, drain pipe in supply room, just inside entry door	No Asbestos Detected	20\% Cellulose, 70\% Hair, 10% Non-fibrous
121307-HG20B	Pipe insulation, brown, drain pipe in supply room, just inside entry door	No Asbestos Detected	20\% Cellulose, 70\% Hair, 10% Non-fibrous
121307-HG20C	Pipe insulation, brown, drain pipe in supply room, just inside entry door	No Asbestos Detected	98\% Hair 2\% Non-fibrous
121307-HG21	Pressboard panel, white, class room, just inside doorway to drill hall, ceiling cover piece over light	No Asbestos Detected	100\% Cellulose
121307-HG22	Exterior window caulk, white, Commander's office, southeast wall, south window	No Asbestos Detected	100\% Non-fibrous
121307-HG22B	Exterior window caulk, white, Commander's office, southeast wall, north window	No Asbestos Detected	100\% Non-fibrous
121307-HG23	Exterior window glaze, Commander's office, southeast wall, south window	No Asbestos Detected	100\% Non-fibrous

- Trace means less than 1%. SFP Means analysis was terninated because asbestos was detected on a previous homogenous sample during the survey work. Please reference the "HG" group number.
- Please reference the full report for discussions and additional informatios and limitations pertaining to these results.

Page 3 of 4 for the above date and location

Visit us at www.airpf.com
Air Quality Testing
Mold Assessment

NH Adjutant General
 Peterborough Readiness Center

Industrial Hygiene \& Safety
EH\&S Training \& Seminars
Asbestos \& Lead Management

SUMMARY OF BULK MATERIAL SAMPLING AND RESULTS

Polarized Light Microscopy - EPA 600/R-93/116 Method
Samples Collected: December 13, 2007

Sample ID	Sample Description	Asbestos Content	Other Content
$121307-$ HG23B	Exterior window glaze, kitchen, northeast wall, sole window	No Asbestos Detected	100% Non-fibrous
07.2707121307 Readiress Crr bulk tbl			

- Trace means less than 1\%. SFP Means analysis was terminated because asbestos was detected on a previous homogenous sample during the survey work. Please reference the " $\mathrm{HG}^{\text {" group number. }}$
- Please reference the full report for discussions and additional information and limitations pertaining to these results.

Page 4 of 4 for the above date and location

RPF ASSOCIATES, INC. Environmental Health \& Safety

Visit us at www.airpf.com Air Quality Testing Mold Assessment Industrial Hygiene \& Safety EH\&S Training \& Seminars
Asbestos \& Lead Management Peterborough Motor Vehicle Storage Building

SUMMARY OF BULK MATERIAL SAMPLING AND RESULTS
 Polarized Light Microscopy - EPA 600/R-93/116 Method

Samples Collected: December 13, 2007

Sample ID	Sample Description	Asbestos Content	Other Content
121307-HG101	Interior window glaze, gray, office, south wall, sole window	No Asbestos Detected	100\% Non-fibrous
121307-HG101B	Interior window glaze, gray, maintenance area, northwest wall, sole window	No Asbestos Detected	100\% Non-fibrous
121307-HG102	Fiberboard, yellow, cage area, northwest wall, center	No Asbestos Detected	90% Cellulose 10% Non-fibrous
121307-HG102B	Fiberboard, yellow, maintenance area, southeast wall, center	No Asbestos Detected	90% Cellulose 10% Non-fibrous
121307-HG103	Formica green, with red adhesive, office, countertop along northwest wall	No Asbestos Detected	100\% Non-fibrous
121307-HG103B	Formica, green, with red adhesive, office, countertop along northwest wall	No Asbestos Detected	100\% Non-fibrous
121307-HG104	Textured Surfacing, office ceiling, approximate center	No Asbestos Detected	100\% Non-fibrous
121307-HG104B	Textured Surfacing, office ceiling, approximate center	No Asbestos Detected	100\% Non-fibrous
121307-HG104C	Textured Surfacing, office ceiling, approximate center	No Asbestos Detected	100% Non-fibrous
121307-HG105	Gypsum, white, office area, northwest wall, north corner	No Asbestos Detected	10\% Cellulose 90\% Non-fibrous
121307-HG105B	Gypsum, white, office area, northeast wall, east corner	No Asbestos Detected	10\% Cellulose 90% Non-fibrous
121307-HG105C	Gypsum, white, office ceiling, approximate center	No Asbestos Detected	10% Cellulose 90% Non-fibrous
121307-HG106	Joint compound, white, office area, northeast wall, north comer	No Asbestos Detected	100\% Non-fibrous
121307-HG106B	Joint compound, white, office area, northeast wall, south corner	No Asbestos Detected	100\% Non-fibrous
121307-HG106C	Joint compound, white, office area, northeast wall, south comer	No Asbestos Detected	100\% Non-fibrous
121307-HG107	Pressboard panel, brown, maintenance area; southeast wall, near entry door	No Asbestos Detected	90\% Cellulose 10% Non-fibrous
121307-HG108	Gyp-crete, white, garage ceiling, southwest side, approximate center	No Asbestos Detected	100\% Non-fibrous

- Trace means less than 1%. SFP Means analysis was terminated because asbestos was detected on a previous homogenous sample during the survey work. Please reference the " $\mathrm{HG}^{\text {" }}$ group number.
- Please reference the fuil report for discussions and additional information and limitations pertaining to these results.

Page 1 of 2 for the above date and location

Visit us at www.airpf.com
Air Quality Testing
Mold Assessment
Industrial Hygiene \& Safety
EH\&S Training \& Seminars
NH Adjutant General
Asbestos \& Lead Management Peterborough Motor Vehicle Storage Building

SUMMARY OF BULK MATERIAL SAMPLING AND RESULTS

Polarized Light Microscopy - EPA 600/R-93/116 Method
Samples Collected: December 13, 2007

Sample ID	Sample Description	Asbestos Content	Other Content
$121307-$ HG108B	Gyp-crete, white, garage ceiling, southwest side, approximate center	No Asbestos Detected	100% Non-fibrous
121307 -HG108C	Gyp-crete, white, garage ceiling, southwest side, approximate center	No Asbestos Detected	100% Non-fibrous

- Trace means less than 1%. SFP Means analysis was terminated because asbestos was detected on a previous homogenous sample during the survey work. Please reference the "HG" group number.
- Please reference the full report for discussions and additional information and limitations pertaining to these results.

Page 2 of 2 for the above date and location

APPENDIX C

NH ADJUTANT GENERAL

 Peterborough Readiness Center

 Peterborough Readiness Center}

Example Photographs

Photo 1: Pipe and fitting insulation in Maintenance Office

Photo 2: ACBM pipe and fitting insulation in the kitchen

NH ADJUTANT GENERAL

Peterborough Readiness Center

Example Photographs

Photo 3: Black 9" ACBM floor tile within the main entry corridor.

Photo 4: Classroom area with green 9" ACBM floor tile and mastic.

NH ADJUTANT GENERAL Peterborough Readiness Center

Example Photographs

Photo 5: Example of window containing exterior ACBM glaze.

APPENDIX D

INDUSTRY AND REGULATORY OVERVIEW

General Overview

Asbestos is the name for a group of naturally occurring minerals that separate into strong, very fine fibers. The adverse health effects associated with asbestos exposure have been extensively studied for many years. Results of these studies and epidemiological investigations have demonstrated that inhalation of asbestos fibers may lead to increased risk of developing one or more diseases. In all cases, extreme care must be used not to disturb asbestos-containing materials or to create fiber release episodes.

Asbestos-containing building material (ACBM) that is in good condition, and is not damaged or otherwise disturbed, is not likely release asbestos fibers into the air if it is managed properly. When properly managed, release of asbestos fibers into the air or surrounding areas is prevented or minimized, and the risk of asbestos-related disease can be reduced to a negligible level. However, ACBM can become hazardous when, due to damage, disturbance, or deterioration over time, they release fibers into the air. In the event of fiber release without proper controls, elevated airborne concentrations of asbestos create a potential hazard for any employees and building occupants in the affected areas.

ACBM is classified by the different regulatory agencies based on friability. Friable ACBM , when dry, can be crumbled, pulverized, or reduces to powder by hand pressure. Considering that a primary concern when dealing with ACBM is airborne fibers or the potential for exposure to airborne fibers, friable ACBM is typically considered to present more of a health risk as compared with nonfriable ACBM. Nonfriable ACBM is further grouped by the EPA into Category I and Category II nonfriable ACBMS depending on the specific type of $A C M$. It should be noted that nonfriable ACBM that is rendered friable, or in some cases, subjected to certain activities and forces during work, may also be considered regulated as friable ACBM.

Health Issues

The three primary diseases most often related to asbestos exposure are asbestosis, mesothelioma, and lung cancer. Asbestosis is a fibrous scarring of the lung caused by scar tissue formations in the lung in response to the asbestos fibers. Mesothelioma is a rare cancer of the lining of the lungs or the lining of the abdomen. Exposure to all types of asbestos increases the risk of developing lung cancer and asbestosis. Other diseases found more often among persons exposed to asbestos include cancer of the esophagus, stomach, colon, and pancreas; pleural plaques and pleural thickening; and pleural effusion.

Exposure to airborne asbestos rarely causes immediate health problems. The diseases related to asbestos may develop over a period of 10 to 30 years. Studies have shown that there is dose-response relationship between exposure to asbestos and disease -or the more asbestos inhaled over an extended period, the greater the risk of developing an asbestos-related disease. Smoking, in combination with asbestos exposure, can increase the risk of disease by 50 percent.

Regulatory Overview

Asbestos is highly regulated at the federal, state, and local levels. To date, the two primary Federal agencies responsible for generating asbestos-related regulations are the U.S. Environmental Protection Agency (EPA) and the Occupational Safety and Health Administration (OSHA). Additionally, regulations regarding asbestos vary from state-to-state and, in some cases, locally.

Regulations promulgated by the Environmental Protection Agency (EPA) include:
Asbestos Abatement Projects; Worker Protection Rule
Title 40 Part 763, Sub-part G of the Code of Federal Regulations
Asbestos School Hazard Abatement Reauthorization Act (ASHARA)
Training Requirements of (AHERA) Regulation
Asbestos Containing Materials in Schools Final Rule \& Notice
Title 40, Part 763, Sub-part E, Code of Federal Regulations
Asbestos Hazard Emergency Response Act (AHERA) Regulation Asbestos Containing Materials in Schools Final Rule \& Notice
Title 40, Part 763, Sub-part E of the Code of Federal Regulations
National Emission Standard for Hazardous Air Pollutants (NESHAPS)
National Emission Standard for Asbestos, Title 40, Part 61, Sub-part A, and Sub-part M (Revised Sub-part B) of the Code of Federal Regulations

The US Occupational Safety and Health Administration (OSHA) has also developed regulations for asbestos (abatement and related issues) including:

Occupational Exposure to Asbestos, Tremolite, Anthophyllite, and Actinolite; Final Rules

Title 29, Part 1910, Section 1001 and Part 1926, Section 1101 of the Code of Federal Regulations

Respiratory Protection
Title 29, Part 1910, Section 134 of the Code of Federal Regulations
Other related sections of 29 CFR 1926 and 29 CFR 1910

Individual state agencies must also be consulted for current updated copies of state rules and regulations. Regulations and requirements can very significantly from state to state.

In summary, based on current regulatory requirements, $A C B M$, which may be impacted or disturbed (such that asbestos fiber release occurs) by renovation, demolition, or other such activity, must be removed by qualified, licensed firms. ACBM, which will not be impacted or disturbed by renovation or demolition activity, may be left in place if managed properly and if the materials are maintained in good condition. A qualified, licensed project designer and certified industrial hygienist must design abatement work. All abatement should be monitored, tested, and inspected by a qualified $\mathrm{EH} \& \mathrm{~S}$ firm/certified industrial hygienist. ACBM that will not be impacted or disturbed by renovation or demolition activity may be left in place if managed properly and if the materials are maintained in good condition.

APPENDIX E

SUMMARY OF METHODOLOGY

Asbestos

An EPA accredited inspector surveyed all accessible building space in the designated structure. Suspect materials were inventoried and categorized into homogeneous groups of materials. To the extent indicated in the report, samples were then extracted from the different groups of homogeneous materials in accordance with applicable State and federal rules and regulations. Samples were placed into containers, labeled, and submitted for analysis to determine asbestos content. Analysis was conducted using polarized light microscopy (PLM). Sampling and analytical protocols used during the survey work were based on the requirements of 40 CFR Part 763. Although PLM is the method currently recognized in State and federal regulations for asbestos identification in bulk samples, some industry studies have found that PLM may not be sensitive enough to detect all of the asbestos fibers in certain types of materials, such as floor tile. In the event that more definitive results are requested, RPF recommends that confirmation testing be completed using transmission electron microscopy.

Inaccessible areas, such as building space behind walls and floors were not included in the inspection and care should be used when accessing these areas during demolition. In the event that additional suspect materials are encountered, the materials should be properly tested by an accredited inspector. Please also reference the discussions and findings for additional notes on the inspection methods used during this inspection.

SURVEY LIMITATIONS: ACBM

1. The observations and conclusions presented in the Report were based solely upon the services described herein, and not on scientific tasks or procedures beyond the scope of services as discussed in the proposal and text of the report. The conclusions and recommendations are based on visual observations and testing, limited as indicated in the Report, and were arrived at in accordance with generally accepted standards of industrial hygiene practice and asbestos professionals. In addition and as applicable, where sample analyses were conducted by an outside laboratory, RPF has relied upon the data provided, and has not conducted an independent evaluation of the reliability of this data.
2. Observations were made of the designated accessible areas of the site as indicated in the Report. While it was the intent of RPF to conduct a survey to the degree indicated, it is important to note that not all suspect ACBM material in the designated areas were specifically assessed and visibility was limited, as indicated, due to the presence of furnishings, equipment, solid walls and solid or suspended ceilings throughout the facility. Suspect material may have been used and may be present in areas where detection and assessment is difficult until renovation and/or demolition proceeds.
3. Although some assumptions may have been stated regarding the potential presence of inaccessible or hidden ACBM, a full inspection for all ACBM or a destructive inspection for possible inaccessible suspect ACBM was not conducted. This inspection did not include a hazard assessment survey or testing to determine current dust concentrations of asbestos in and around the building. The survey was limited to ACBM as indicated herein and a site assessment for other possible environmental health and safety hazards or subsurface pollution was not performed as part of the scope of this initial site inspection.
4. Where access to portions of the surveyed area was unavailable or limited, RPF renders no opinion of the condition and assessment of these areas. The survey results only apply to areas specifically accessed by RPF during the site inspection.
5. Interiors of mechanical equipment and other building or process equipment may also have ACBM gaskets or insulation present and were not included in this inspection. Further inspections would likely be required prior to renovation or demolition activity.
6. Existing reports, drawings, and analytical results provided by the Client to RPF, as applicable, were not verified and, as such, RPF has relied upon the data provided as indicated, and has not conducted an independent evaluation of the reliability of these data.
7. All hazard communication and notification requirements, as required by U.S. OSHA regulation 29 CFR Part 1926, 29 CFR Part 1910, and other applicable rules and regulations, by and between the Client, general contractors, subcontractors, building occupants, employees and other affected persons were the responsibility of the Client and Client's abatement contractor and are not part of the scope of services to be provided by RPF.
8. Results presented in the report area limited to the materials and conditions present at the time that the site inspection was actually performed by RPF. The applicability of the observations and recommendations presented in this report to other portions of the site were not determined as part of this scope of work. Many accidents, injuries and exposures and environmental conditions are a result of individual employee/employer actions and behaviors, which will vary from day to day, and with operations being conducted. Changes to the site that occur subsequent to the RPF inspection may result in conditions which differ from those present during the survey and presented in the findings of the report. For example, during construction changes it is possible that previously inaccessible suspect material may be encountered. As such, the contractors, employers OSHA-competent persons, and other affected staff should be advised of the possible presence of inaccessible ACBM and suspect ACBM. In the event that newly identified suspect material is encountered, please contact RPF to arrange for proper inspection, assessment and testing as applicable.
9. Typically, hazardous building materials such as asbestos, lead paint, PCBs, mercury, refrigerants, hydraulic fluids and other materials may be present in buildings. The survey performed by RPF only addresses the specific items as indicated in the report. In general it is recommended that surveys for all accessible hazardous building material be performed. Notify RPF to arrange for additional survey work as needed.

APPENDIX D

SOIL ANALYTICAL RESULTS

Resource Laboratories, LLC
124 Heritage Avenue \#10 Portsmouth, NH 03801
Donald Kirkland
GZA GeoEnvironmental, Inc.
Airpark Business Center
PO Number: None
LabID: 15945
Date Received: 12/30/08
380 Harvey Rd
Manchester, NH 03103-3347

Project: 04.0024843 .01 NHANG Armory Peterboro, NH
Attached please find results for the analysis of the samples received on the date referenced above.

Unless otherwise noted in the attached report, the analyses performed met the requirements of Resource Laboratories, LLC Quality Assurance Plan. The Standard Operating Procedures (SOP) are based upon USEPA SW-846, USEPA Methods for Chemical Analysis of Water and Wastewater, Standard Methods for the Examination of Water and Wastewater and other recognized methodologies. The results contained in this report pertain only to the samples as indicated on the chain of custody.

Resource Laboratories, LLC maintains certification with the agencies listed below.
We appreciate the opportunity to provide laboratory services. If you have any questions regarding the enclosed report, please contact the laboratory and we will be glad to assist you.

Sincerely,
Resource Laboratories, LLC

Total number of pages

Resource Laboratories, LLC Certifications
New Hampshire 1732
Massachusetts M-NH902
Maine
NH903

Project ID: 04.0024843 .01 NHANG Armory Peterboro, NH
Lab ID: 15945
Lab Number: 15945-002
Sample ID: TP-7-SB (4.5-6.5)
Matrix: Solid Percent Dry: 80.6 \% Results are expressed on a dry weight basis.
Sampled: 12/29/08 9:00
Parameter
dichlorodifluoromethane
chloromethane
vinyl chloride
bromomethane
chloroethane
trichlorofluoromethane
diethyl ether
acetone
1,1-dichloroethene
methylene chloride
carbon disulfide
methyl t-butyl ether (MTBE)
trans-1,2-dichloroethene
isopropyl ether (DIPE)
ethyl t-butyl ether (ETBE)
1,1-dichloroethane
t-butanol (TBA)
2-butanone (MEK)
2,2-dichloropropane
cis-1,2-dichloroethene
chloroform
bromochloromethane
tetrahydrofuran (THF)
1,1,1-trichloroethane
1,1-dichloropropene
t-amyl-methyl ether (TAME)
carbon tetrachloride
1,2-dichloroethane
benzene
trichloroethene
1,2-dichloropropane
bromodichloromethane
1,4-dioxane
dibromomethane
4-methyl-2-pentanone (MIBK)
cis-1,3-dichloropropene
toluene
trans-1,3-dichloropropene
2-hexanone
1,1,2-trichloroethane
1,3-dichloropropane
tetrachloroethene
dibromochloromethane
1,2-dibromoethane (EDB)

Result	Quant Limit	Instr Dil'n		Prep	Analysis			
		Units	Factor	Analyst Date	Batch	Date	Time	Reference
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	17/709	15:49	SW5035A8260B
< 0.1	0.1	ug / g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
<0.1	0.1	ug / g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
<2	2	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
< 0.1	0.1	ug / g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
<0.1	0.1	ug / g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
<2	2	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
< 0.3	0.3	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
<0.1	0.1	ug / g	1	LMM 1/5/09	1930	17/109	15:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
<0.1	0.1	ug / g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
< 0.5	0.5	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
<2	2	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
< 0.4	0.4	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
< 0.5	0.5	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B

Project ID: 04.0024843 .01 NHANG Armory Peterboro, NH
Lab ID: 15945
Lab Number: 15945-002
Sample ID: TP-7-SB (4.5-6.5)
Matrix: Solid Percent Dry: 80.6 \% Results are expressed on a dry weight basis.
Sampled: 12/29/08 9:00
Parameter
chlorobenzene
1,1,1,2-tetrachloroethane
ethylbenzene
m\&p-xylenes
o-xylene
styrene
bromoform
isopropylbenzene
1,1,2,2-tetrachloroethane
1,2,3-trichloropropane
n -propylbenzene
bromobenzene
1,3,5-trimethylbenzene
2-chlorotoluene
4-chlorotoluene
tert-butylbenzene
1,2,4-trimethylbenzene
sec-butylbenzene
1,3-dichlorobenzene
4 -isopropyltoluene
1,4-dichlorobenzene
1,2-dichlorobenzene
n-butylbenzene
1,2-dibromo-3-chloropropane (DBCP)
1,2,4-trichlorobenzene
1,3,5-trichlorobenzene
hexachlorobutadiene
naphthalene
1,2,3-trichlorobenzene
Surrogate Recovery
dibromofluoromethane SUR
toluene-D8 SUR
4-bromofluorobenzene SUR
a,a,a-trifluorotoluene SUR

Result	Quant	Instr Dil'n		Prep	Analysis			
	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
<0.1	0.1	ug / g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
<0.1	0.1	$u \mathrm{~g} / \mathrm{g}$	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
<0.1	0.1	ug / g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
<0.1	0.1	ug / g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
Limits								
98	78-114	\%	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
98	88-110	\%	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
97	86-115	\%	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B
107	70-130	\%	1	LMM 1/5/09	1930	1/7/09	15:49	SW5035A8260B

Project ID: 04.0024843 .01 NHANG Armory Peterboro, NH
Lab ID: 15945
Lab Number: 15945-003
Sample ID: TP-16-SS (0-0.5)
Matrix: Solid Percent Dry: 70.8\% Results are expressed on a dry weight basis.
Sampled: 12/29/08 9:50

Parameter
dichlorodifluoromethane
chloromethane
vinyl chloride
bromomethane
chloroethane
trichlorofluoromethane
diethyl ether acetone
1,1-dichloroethene
methylene chloride
carbon disulfide
methyl t-butyl ether (MTBE)
trans-1,2-dichloroethene
isopropyl ether (DIPE)
ethyl t-butyl ether (ETBE)
1,1-dichloroethane
t-butanol (TBA)
2-butanone (MEK)
2,2-dichloropropane
cis-1,2-dichloroethene
chloroform
bromochloromethane
tetrahydrofuran (THF)
1,1,1-trichloroethane
1,1-dichloropropene
t-amyl-methyl ether (TAME)
carbon tetrachloride
1,2-dichloroethane
benzene
trichloroethene
1,2-dichloropropane
bromodichloromethane
1,4-dioxane
dibromomethane
4-methyl-2-pentanone (MIBK)
cis-1,3-dichloropropene
toluene
trans-1,3-dichloropropene
2-hexanone
1,1,2-trichloroethane
1,3-dichloropropane
tetrachloroethene
dibromochloromethane
1,2-dibromoethane (EDB)

	Quant	Instr Diln				Prep		Analysis		
Result	Limit	Units	Factor	Analyst	Date	Batch	Date	Time		

Project ID: 04.0024843 .01 NHANG Armory Peterboro, NH
Lab ID: 15945
Lab Number: 15945-003
Sample ID: TP-16-SS (0-0.5)
Matrix: Solid Percent Dry: 70.8 \% Results are expressed on a dry weight basis.

Sampled: 12/29/08 9:50

Parameter

chlorobenzene
1,1,1,2-tetrachloroethane
ethylbenzene
m\&p-xylenes
o-xylene
styrene
bromoform
isopropylbenzene
1,1,2,2-tetrachloroethane
1,2,3-trichloropropane
n-propylbenzene
bromobenzene
1,3,5-trimethylbenzene
2-chlorotoluene
4-chlorotoluene
tert-butylbenzene
1,2,4-trimethylbenzene
sec-butylbenzene
1,3-dichlorobenzene
4-isopropyltoluene
1,4-dichlorobenzene
1,2-dichlorobenzene
n-butylbenzene
1,2-dibromo-3-chloropropane (DBCP)
1,2,4-trichlorobenzene
1,3,5-trichlorobenzene
hexachlorobutadiene
naphthalene
1,2,3-trichlorobenzene
Surrogate Recovery
dibromofluoromethane SUR
toluene-D8 SUR
4-bromofluorobenzene SUR
a,a,a-trifluorotoluene SUR

	Quant	Instr Dil'n		Prep	Analysis			
Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
< 0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
<0.6	0.6	ug / g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
11	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
34	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
16	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
< 0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
< 0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
4.2	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
< 0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
< 0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
11	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
< 0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
17	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
<0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
< 0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
< 0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
60	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
7.2	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
< 0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
4.1	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
< 0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
< 0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
<0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
< 0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
<0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
<0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
<0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
6.8	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
<0.6	0.6	ug/g	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
	Limits							
97	78-114	\%	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
103	88-110	\%	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
99	86-115	\%	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B
91	70-130	\%	5	LMM 1/5/09	1930	1/9/09	2:24	SW5035A8260B

Project ID: 04.0024843 .01 NHANG Armory Peterboro, NH
Lab ID: 15945
Lab Number: 15945-005
Sample ID: TP-11-SB (3-4)
Matrix: Solid Percent Dry: $64.3 \% \quad$ Results are expressed on a dry weight basis.
Sampled: 12/29/08 10:30
Parameter
dichlorodifluoromethane
chloromethane
vinyl chloride
bromomethane
chloroethane
trichlorofluoromethane
diethyl ether acetone 1,1-dichloroethene methylene chloride carbon disulfide methyl t-butyl ether (MTBE) trans-1,2-dichloroethene isopropyl ether (DIPE) ethyl t-butyl ether (ETBE) 1,1-dichloroethane t-butanol (TBA)
2-butanone (MEK)
2,2-dichloropropane cis-1,2-dichloroethene chloroform bromochloromethane tetrahydrofuran (THF)
1,1,1-trichloroethane
1,1-dichloropropene
t-amyl-methyl ether (TAME)
carbon tetrachloride
1,2-dichloroethane
benzene
trichloroethene
1,2-dichloropropane
bromodichloromethane
1,4-dioxane
dibromomethane
4-methyl-2-pentanone (MIBK)
cis-1,3-dichloropropene
toluene
trans-1,3-dichloropropene
2-hexanone
1,1,2-trichloroethane
1,3-dichloropropane
tetrachloroethene
dibromochloromethane
1,2-dibromoethane (EDB)

	Quant	Instr Dil'n		Prep	Analysis			
Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
<0.1	0.1	ug / g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
< 4	4	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
<0.1	0.1	ug / g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
<4	4	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
<0.4	0.4	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	17/709	16:19	SW5035A8260B
< 0.7	0.7	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
< 4	4	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
<0.7	0.7	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
<0.7	0.7	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	17/109	16:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B

Project ID: 04.0024843 .01 NHANG Armory Peterboro, NH
Lab ID: 15945
Lab Number: 15945-005
Sample ID: TP-11-SB (3-4)
Matrix: Solid Percent Dry: 64.3 \% Results are expressed on a dry weight basis.
Sampled: 12/29/08 10:30
Parameter
chlorobenzene
1,1,1,2-tetrachloroethane
ethylbenzene
m\&p-xylenes
o-xylene
styrene
bromoform
isopropylbenzene
1,1,2,2-tetrachloroethane
1,2,3-trichloropropane
n -propylbenzene
bromobenzene
1,3,5-trimethylbenzene
2-chlorotoluene
4-chlorotoluene
tert-butylbenzene
1,2,4-trimethylbenzene
sec-butylbenzene
1,3-dichlorobenzene
4 -isopropyltoluene
1,4-dichlorobenzene
1,2-dichlorobenzene
n-butylbenzene
1,2-dibromo-3-chloropropane (DBCP)
1,2,4-trichlorobenzene
1,3,5-trichlorobenzene
hexachlorobutadiene
naphthalene
1,2,3-trichlorobenzene
Surrogate Recovery
dibromofluoromethane SUR
toluene-D8 SUR
4-bromofluorobenzene SUR
a,a,a-trifluorotoluene SUR

	Quant	Instr Dil'n		Pre	Analysis			
Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
	Limits							
97	78-114	\%	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
99	88-110	\%	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
98	86-115	\%	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B
104	70-130	\%	1	LMM 1/5/09	1930	1/7/09	16:19	SW5035A8260B

Project ID: 04.0024843 .01 NHANG Armory Peterboro, NH
Lab ID: 15945
Lab Number: 15945-006
Sample ID: TP-11-SB (3-4) DUP
Matrix: Solid Percent Dry: 69.3 \% Results are expressed on a dry weight basis.

Sampled: 12/29/08 10:30
Parameter
dichlorodifluoromethane chloromethane vinyl chloride bromomethane chloroethane trichlorofluoromethane diethyl ether acetone
1,1-dichloroethene methylene chloride carbon disulfide methyl t-butyl ether (MTBE) trans-1,2-dichloroethene isopropyl ether (DIPE) ethyl t-butyl ether (ETBE)
1,1-dichloroethane
t-butanol (TBA)
2-butanone (MEK)
2,2-dichloropropane
cis-1,2-dichloroethene
chloroform
bromochloromethane
tetrahydrofuran (THF)
1,1,1-trichloroethane
1,1-dichloropropene
t-amyl-methyl ether (TAME)
carbon tetrachloride
1,2-dichloroethane
benzene
trichloroethene
1,2-dichloropropane
bromodichloromethane
1,4-dioxane
dibromomethane
4-methyl-2-pentanone (MIBK)
cis-1,3-dichloropropene
toluene
trans-1,3-dichloropropene
2-hexanone
1,1,2-trichloroethane
1,3-dichloropropane
tetrachloroethene
dibromochloromethane
1,2-dibromoethane (EDB)

		Instr Dil'n		Prep	Analysis			
Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
<0.1	0.1	ug / g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
<3	3	ug / g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
<0.1	0.1	ug / g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
<0.1	0.1	ug / g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
< 0.1	0.1	ug / g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
<3	3	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
<0.4	0.4	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
<0.1	0.1	ug / g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
<0.1	0.1	ug / g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
< 0.6	0.6	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
< 0.1	0.1	ug / g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
< 0.1	0.1	ug / g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
<3	3	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
<0.6	0.6	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
<0.6	0.6	ug / g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
< 0.1	0.1	ug / g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
<0.1	0.1	ug / g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	W50

Project ID: 04.0024843 .01 NHANG Armory Peterboro, NH
Lab ID: 15945
Lab Number: 15945-006
Sample ID: TP-11-SB (3-4) DUP
Matrix: Solid Percent Dry: 69.3 \% Results are expressed on a dry weight basis.
Sampled: 12/29/08 10:30
Parameter
chlorobenzene
ethylbenzene
m\&p-xylenes
o-xylene
styrene
bromoform
isopropylbenzene
1,1,2,2-tetrachloroethane
1,2,3-trichloropropane
n-propylbenzene
bromobenzene
1,3,5-trimethylbenzene
2-chlorotoluene
4-chlorotoluene
tert-butylbenzene
1,2,4-trimethylbenzene
sec-butyibenzene
1,3-dichlorobenzene
4-isopropyltoluene
1,4-dichlorobenzene
1,2-dichlorobenzene
n -butylbenzene
1,2-dibromo-3-chloropropane (DBCP)
1,2,4-trichlorobenzene
1,3,5-trichlorobenzene
hexachlorobutadiene
naphthalene
1,2,3-trichlorobenzene
Surrogate Recovery
dibromofluoromethane SUR
toluene-D8 SUR
4-bromofluorobenzene SUR
a,a,a-trifluorotoluene SUR

	ant	Instr Dil'n		Prep	Analysis			
Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
<0.1	0.1	ug / g	1	LMM 1/5/09	1930	177/09	17:50	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
< 0.1	0.1	ug / g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
<0.1	0.1	ug / g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
<0.1	0.1	ug / g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
<0.1	0.1	ug / g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
<0.1	0.1	ug / g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
<0.1	0.1	ug / g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
<0.1	0.1	ug / g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
<0.1	0.1	ug / g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
<0.1	0.1	ug / g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
<0.1	0.1	ug / g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
	Limits							
96	78-114	\%	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
98	88-110	\%	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
89	86-115	\%	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B
99	70-130	\%	1	LMM 1/5/09	1930	1/7/09	17:50	SW5035A8260B

Project ID: 04.0024843.01 NHANG Armory Peterboro, NH
Lab ID: 15945
Lab Number: 15945-010
Sample ID: TP-1-SB (2.5-4.5)
Matrix: Solid Percent Dry: 83.3 \% Results are expressed on a dry weight basis.
Sampled: 12/29/08 12:45

Parameter
dichlorodifluoromethane
chloromethane
vinyl chloride bromomethane chloroethane trichlorofluoromethane diethyl ether acetone
1,1-dichloroethene
methylene chloride carbon disulfide methyl t-butyl ether (MTBE)
trans-1,2-dichloroethene isopropyl ether (DIPE) ethyl t-butyl ether (ETBE)
1,1-dichloroethane
t-butanol (TBA)
2-butanone (MEK)
2,2-dichloropropane
cis-1,2-dichloroethene
chloroform
bromochloromethane
tetrahydrofuran (THF)
1,1,1-trichloroethane
1,1-dichloropropene
t-amyl-methyl ether (TAME)
carbon tetrachloride
1,2-dichloroethane
benzene
trichloroethene
1,2-dichloropropane
bromodichloromethane
1,4-dioxane
dibromomethane
4-methyl-2-pentanone (MIBK)
cis-1,3-dichloropropene
toluene
trans-1,3-dichloropropene
2-hexanone
1,1,2-trichloroethane
1,3-dichloropropane
tetrachloroethene
dibromochloromethane
1,2-dibromoethane (EDB)

Result		Instr Dil'n		Analyst $\begin{array}{r}\text { Prep } \\ \text { Date }\end{array}$	Analysis			
	Limit	Units	Factor		Batch	Date	Time	Reference
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
<2	2	ug / g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260
<0.1	0.1	ug / g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
<0.1	0.1	ug / g	1	LMM 1/5/09	1930	1/7/09	17:19	SW503
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260
<2	2	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
<0.3	0.3	ug / g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
< 0.4	0.4	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A826
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
<2	2	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
< 0.4	0.4	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	17/109	17:19	SW5035A8260
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7109	17:19	SW5035A8260B
< 0.4	0.4	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B

Project ID: 04.0024843.01 NHANG Armory Peterboro, NH
Lab ID: 15945
Lab Number: 15945-010
Sample ID: TP-1-SB (2.5-4.5)
Matrix: Solid Percent Dry: 83.3 \%
Sampled: 12/29/08 12:45
Parameter
1,1,1,2-tetrachloroethane
ethylbenzene
m\&p-xylenes
o-xylene
styrene
bromoform
isopropylbenzene
1,1,2,2-tetrachloroethane
1,2,3-trichloropropane
n-propylbenzene
bromobenzene
1,3,5-trimethylbenzene
2-chlorotoluene
4-chlorotoluene
tert-butylbenzene
1,2,4-trimethylbenzene
sec-butylbenzene
1,3-dichlorobenzene
4-isopropyltoluene
1,4-dichlorobenzene
1,2-dichlorobenzene n-butylbenzene
1,2-dibromo-3-chloropropane (DBCP)
1,2,4-trichlorobenzene
1,3,5-trichlorobenzene
hexachlorobutadiene
naphthalene
1,2,3-trichlorobenzene
Surrogate Recovery
dibromofluoromethane SUR
toluene-D8 SUR
4-bromofluorobenzene SUR
a,a,a-trifluorotoluene SUR

	Quant	Instr Dil'n		Prep	Analysis			
Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
<0.1	0.1	ug / g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
< 0.1	0.1	ug / g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
< 0.1	0.1	ug / g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
	Limits							
97	78-114	\%	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
96	88-110	\%	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
96	86-115	\%	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B
109	70-130	\%	1	LMM 1/5/09	1930	1/7/09	17:19	SW5035A8260B

Project ID: 04.0024843 .01 NHANG Armory Peterboro, NH
Lab ID: 15945
Lab Number: 15945-011
Sample ID: TP-4A-SB (2-3)
Matrix: Solid Percent Dry: 89.2 \% Results are expressed on a dry weight basis.
Sampled: 12/29/08 14:30
Parameter
dichlorodifluoromethane chloromethane
vinyl chloride
bromomethane chloroethane
trichlorofluoromethane
diethyl ether acetone
1,1-dichloroethene
methylene chloride
carbon disulfide
methyl t-butyl ether (MTBE)
trans-1,2-dichloroethene
isopropyl ether (DIPE)
ethyl t-butyl ether (ETBE)
1,1-dichloroethane
t-butanol (TBA)
2-butanone (MEK)
2,2-dichloropropane
cis-1,2-dichloroethene
chloroform
bromochloromethane
tetrahydrofuran (THF)
1,1,1-trichloroethane
1,1-dichloropropene
t-amyl-methyl ether (TAME)
carbon tetrachloride
1,2-dichloroethane
benzene
trichloroethene
1,2-dichloropropane
bromodichloromethane
1,4-dioxane
dibromomethane
4-methyl-2-pentanone (MIBK)
cis-1,3-dichloropropene
toluene
trans-1,3-dichloropropene
2-hexanone
1,1,2-trichloroethane
1,3-dichloropropane
tetrachloroethene
dibromochloromethane
1,2-dibromoethane (EDB)

	Quant	Instr Dil'n		Prep	Analysis			
Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
<0.1	0.1	ug / g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
<0.1	0.1	ug / g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
<2	2	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
<0.1	0.1	ug / g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
<0.1	0.1	ug / g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
<0.1	0.1	ug / g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
< 0.1	0.1	ug / g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
<0.1	0.1	ug / g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
<2	2	ug / g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
<0.2	0.2	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
< 0.4	0.4	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
<2	2	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
<0.3	0.3	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
< 0.4	0.4	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B

Project ID: 04.0024843.01 NHANG Armory Peterboro, NH
Lab ID: 15945
Lab Number: 15945-011
Sample ID: TP-4A-SB (2-3)
Matrix: Solid Percent Dry: 89.2 \%
Sampled: 12/29/08 14:30
Parameter
chlorobenzene
1,1,1,2-tetrachloroe
ethylbenzene
m\&p-xylenes
o-xylene
styrene
bromoform
isopropylbenzene

1,1,2,2-tetrachloroethane
1,2,3-trichloropropane
n-propylbenzene
bromobenzene
1,3,5-trimethylbenzene
2-chlorotoluene
4-chlorotoluene
tert-butylbenzene
1,2,4-trimethylbenzene
sec-butylbenzene
1,3-dichlorobenzene
4-isopropyltoluene
1,4-dichlorobenzene
1,2-dichlorobenzene
n-butylbenzene
1,2-dibromo-3-chloropropane (DBCP)
1,2,4-trichlorobenzene
1,3,5-trichlorobenzene
hexachlorobutadiene
naphthalene
1,2,3-trichlorobenzene
Surrogate Recovery
dibromofluoromethane SUR
toluene-D8 SUR
4-bromofluorobenzene SUR
a,a,a-trifluorotoluene SUR

	Quant	Instr Dil'n		Prep	Analysis			
Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
<0.1	0.1	ug / g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
	Limits							
99	78-114	\%	1	L.MM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
99	88-110	\%	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
92	86-115	\%	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B
107	70-130	\%	1	LMM 1/5/09	1930	1/7/09	16:49	SW5035A8260B

Project ID: 04.0024843 .01 NHANG Armory Peterboro, NH
Lab ID: 15945
Lab Number: 15945-012

Sample ID: Trip Blank
Matrix: Solid

Sampled: 12/29/08
Parameter
dichlorodifluoromethane
chloromethane
vinyl chloride
bromomethane
chloroethane
trichlorofluoromethane
diethyl ether
acetone
1,1-dichloroethene
methylene chloride
carbon disulfide
methyl t-butyl ether (MTBE)
trans-1,2-dichloroethene isopropyl ether (DIPE) ethyl t-butyl ether (ETBE)
1,1-dichloroethane t-butanol (TBA)
2-butanone (MEK)
2,2-dichloropropane
cis-1,2-dichloroethene
chloroform
bromochloromethane
tetrahydrofuran (THF)
1,1,1-trichloroethane
1,1-dichloropropene
t-amyl-methyl ether (TAME)
carbon tetrachloride
1,2-dichloroethane
benzene
trichloroethene
1,2-dichloropropane
bromodichloromethane
1,4-dioxane
dibromomethane
4-methyl-2-pentanone (MIBK)
cis-1,3-dichloropropene
toluene
trans-1,3-dichloropropene
2-hexanone
1,1,2-trichloroethane
1,3-dichloropropane
tetrachloroethene
dibromochloromethane
1,2-dibromoethane (EDB)

Result	Quant Limit	Instr Dil'n		Prep	Analysis			
		Units	Factor	Analyst Date	Batch	Date	Time	Reference
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
<0.1	0.1	ug / g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
<0.1	0.1	ug / g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
<2	2	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
<0.1	0.1	ug / g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
<0.1	0.1	ug / g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
< 0.1	0.1	ug / g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
<0.1	0.1	ug / g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
< 0.1	0.1	ug / g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
<2	2	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
<0.3	0.3	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	17/709	14:50	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
<0.5	0.5	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
<0.1	0.1	ug / g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
<2	2	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
< 0.4	0.4	ug/g	1	LMM 1/5/09	1930	17/709	14:50	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
< 0.5	0.5	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
<0.1	0.1	ug / g	1	LMM 1/5/09	1930	709	14:50	SW5035A8260B

Project ID: 04.0024843 .01 NHANG Armory Peterboro, NH
Lab ID: 15945
Lab Number: 15945-012
Sample ID: Trip Blank
Matrix: Solid
Sampled: 12/29/08
Parameter
chlorobenzene
1,1,1,2-tetrachloroethane
ethyibenzene
m\&p-xylenes
o-xylene
styrene
bromoform
isopropylbenzene
1,1,2,2-tetrachloroethane
1,2,3-trichloropropane
n-propylbenzene
bromobenzene
1,3,5-trimethylbenzene
2-chlorotoluene
4-chlorotoluene
tert-butylbenzene
1,2,4-trimethylbenzene
sec-butylbenzene
1,3-dichlorobenzene
4-isopropyltoluene
1,4-dichlorobenzene
1,2-dichlorobenzene
n-butylbenzene
1,2-dibromo-3-chloropropane (DBCP)
1,2,4-trichlorobenzene
1,3,5-trichlorobenzene
hexachlorobutadiene
naphthalene
1,2,3-trichlorobenzene
Surrogate Recovery
dibromofluoromethane SUR
toluene-D8 SUR
4-bromofluorobenzene SUR
a,a,a-trifluorotoluene SUR

	Quant	Instr Dil'n		Prep	Analysis			
Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
<0.1	0.1	ug / g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
<0.1	0.1	ug / g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
<0.1	0.1	ug / g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
< 0.1	0.1	ug / g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
<0.1	0.1	ug / g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
<0.1	0.1	ug / g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
<0.1	0.1	ug / g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
<0.1	0.1	ug / g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
<0.1	0.1	ug / g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
<0.1	0.1	ug / g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
<0.1	0.1	ug / g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
< 0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
<0.1	0.1	ug / g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
<0.1	0.1	ug / g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
<0.1	0.1	ug / g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
<0.1	0.1	ug/g	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
	Limits							
100	78-114	\%	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
95	88-110	\%	1	LMM 1/5/09	1930	17/109	14:50	SW5035A8260B
95	86-115	\%	1	LMM 1/5/09	1930	1/7/09	14:50	SW5035A8260B
102	70-130	\%	1	LMM 1/5/09	1930	1/7/09	14	SW

Project ID: 04.0024843 .01 NHANG Armory Peterboro, NH
Lab ID: 15945
Lab Number: 15945-002
Sample ID: TP-7-SB (4.5-6.5)
Matrix: Solid Percent Dry: 80.6 \%
Sampled: 12/29/08 9:00
Parameter
Diesel Range Organics (DRO) C10-C28
Surrogate Recovery
2-fluorobiphenyI SUR
o-terphenyI SUR
naphthalene

2-methylnaphthalene
acenaphthylene
acenaphthene
dibenzofuran
fluorene
phenanthrene
anthracene
fluoranthene
pyrene
benzo(a)anthracene
chrysene
benzo(b)fluoranthene
benzo(k)fluoranthene benzo(a)pyrene indeno(1,2,3-cd)pyrene dibenzo(a, h) anthracene benzo(g,h,i)perylene Surrogate Recovery
2-fluorobiphenyI SUR
o-terphenyI SUR

Result	Quant	Instr Dil'n		Prep	Analysis			
	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
<240	240	ug/g	1	JLZ 1/5/09	1932	1/6/09	15:54	SW3550B8015B
Limits								
100	40-140	\%	1	JLZ 1/5/09	1932	1/6/09	15:54	SW3550B8015B
113	40-140	\%	1	JLZ 1/5/09	1932	1/6/09	15:54	SW3550B8015B
<0.6	0.6	ug/g	1	AJD 1/5/09	1931	1/6/09	12:36	SW3550B8270C
<0.6	0.6	ug/g	1	AJD 1/5/09	1931	1/6/09	12:36	SW3550B8270C
< 0.6	0.6	ug/g	1	AJD 1/5/09	1931	1/6/09	12:36	SW3550B8270C
< 0.6	0.6	ug/g	1	AJD 1/5/09	1931	1/6/09	12:36	SW3550B8270C
<0.6	0.6	ug/g	1	AJD 1/5/09	1931	1/6/09	12:36	SW3550B8270C
<0.6	0.6	ug/g	1	AJD 1/5/09	1931	1/6/09	12:36	SW3550B8270C
<0.6	0.6	ug/g	1	AJD 1/5/09	1931	1/6/09	12:36	SW3550B8270C
<0.6	0.6	ug/g	1	AJD 1/5/09	1931	1/6/09	12:36	SW3550B8270C
<0.6	0.6	ug/g	1	AJD 1/5/09	1931	1/6/09	12:36	SW3550B8270C
<0.6	0.6	ug/g	1	AJD 1/5/09	1931	1/6/09	12:36	SW3550B8270C
<0.6	0.6	ug/g	1	AJD 1/5/09	1931	1/6/09	12:36	SW3550B8270C
<0.6	0.6	ug/g	1	AJD 1/5/09	1931	1/6/09	12:36	SW3550B8270C
<0.6	0.6	ug/g	1	AJD 1/5/09	1931	1/6/09	12:36	SW3550B8270C
<0.6	0.6	ug/g	1	AJD 1/5/09	1931	1/6/09	12:36	SW3550B8270C
<0.6	0.6	ug/g	1	AJD 1/5/09	1931	1/6/09	12:36	SW3550B8270C
<0.6	0.6	ug/g	1	AJD 1/5/09	1931	1/6/09	12:36	SW3550B8270C
<0.6	0.6	ug/g	1	A.JD 1/5/09	1931	1/6/09	12:36	SW3550B8270C
<0.6	0.6	ug/g	1	AJD 1/5/09	1931	1/6/09	12:36	SW3550B8270C
Limits								
97	43-116	\%	1	AJD 1/5/09	1931	1/6/09	12:36	SW3550B8270C
89	33-141	\%	1	AJD 1/5/09	1931	1/6/09	12:36	SW3550B8270C

Project ID: 04.0024843 .01 NHANG Armory Peterboro, NH
Lab ID: 15945
Lab Number: 15945-003
Sample ID: TP-16-SS (0-0.5)
Matrix: Solid Percent Dry: 70.8%
Results are expressed on a dry weight basis.
Sampled: 12/29/08 9:50
Parameter
Diesel Range Organics (DRO) C10-C28
Result

Surrogate Recovery

Result	Quant	Instr Dil'n		Prep		Analysis			
	Limit	Units	Factor	Analyst	Date	Batch	Date	Time	Reference
39000	2800	ug/g	10	JLZ	1/5/09	1932	1/6/09	17:43	SW3550B8015B
	Limits								
DOR	40-140	\%	10	JLZ	1/5/09	1932	1/6/09	17:43	SW3550B8015B
DOR	40-140	\%	10	JLZ	1/5/09	1932	1/6/09	17:43	SW3550B

o-terphenyI SUR
DOR $=$ Diluted out of range.

naphthalene	8.5 M	0.7	ug/g	1	AJD 1/5/09	1931	1/6/09	13:13	SW3550B8270C
2-methylnaphthalene	32	0.7	ug/g	1	AJD 1/5/09	1931	1/6/09	13:13	SW3550B8270C
acenaphthylene	$<0.7 \mathrm{M}$	0.7	ug / g	1	AJD 1/5/09	1931	1/6/09	13:13	SW3550B8270C
acenaphthene	$<0.7 \mathrm{M}$	0.7	ug/g	1	AJD 1/5/09	1931	1/6/09	13:13	SW3550B8270C
dibenzofuran	2.4 M	0.7	ug/g	1	AJD 1/5/09	1931	1/6/09	13:13	SW3550B8270C
fluorene	5.5 M	0.7	ug/g	1	AJD 1/5/09	1931	1/6/09	13:13	SW3550B8270C
phenanthrene	4.9 M	0.7	ug/g	1	AJD 1/5/09	1931	1/6/09	13:13	SW3550B8270C
anthracene	0.8 M	0.7	ug/g	1	AJD 1/5/09	1931	1/6/09	13:13	SW3550B8270C
fluoranthene	1.1 M	0.7	ug/g	1	AJD 1/5/09	1931	1/6/09	13:13	SW3550B8270C
pyrene	3.9 M	0.7	ug/g	1	AJD 1/5/09	1931	1/6/09	13:13	SW3550B8270C
benzo(a)anthracene	<0.7	0.7	ug/g	1	AJD 1/5/09	1931	1/6/09	13:13	SW3550B8270C
chrysene	<0.7	0.7	ug/g	1	AJD 1/5/09	1931	1/6/09	13:13	SW3550B8270C
benzo(b)fluoranthene	<0.7	0.7	ug/g	1	AJD 1/5/09	1931	1/6/09	13:13	SW3550B8270C
benzo(k)fluoranthene	<0.7	0.7	ug/g	1	AJD 1/5/09	1931	1/6/09	13:13	SW3550B8270C
benzo(a)pyrene	<0.7	0.7	ug/g	1	AJD 1/5/09	1931	1/6/09	13:13	SW3550B8270C
indeno(1,2,3-cd)pyrene	<0.7	0.7	ug/g	1	AJD 1/5/09	1931	1/6/09	13:13	SW3550B8270C
dibenzo(a,h)anthracene	<0.7	0.7	ug/g	1	AJD 1/5/09	1931	1/6/09	13:13	SW3550B8270C
benzo(g,h,i)perylene	<0.7	0.7	ug/g	1	AJD 1/5/09	1931	1/6/09	13:13	SW3550B8270C
Surrogate Recovery		Limits							
2-fluorobiphenyl SUR	127 \#	43-116	\%	1	AJD 1/5/09	1931	1/6/09	13:13	SW3550B8270C

\# = The surrogate showed recovery outside the acceptance limits as a result of co-eluting hydrocarbons.

$\begin{array}{lllllllllll}\text { o-terphenyl SUR } & 99 & 33-141 & \% & 1 & \text { AJD } & 1 / 5 / 09 & 1931 & 1 / 6 / 09 & 13: 13 & \text { SW3550B8270C }\end{array}$
$M=$ The percent recovery for the matrix spike was above the acceptance criteria. All other batch QC was acceptable. Sample heterogeneity suspected.

Project ID: 04.0024843 .01 NHANG Armory Peterboro, NH
Lab ID: 15945
Lab Number: 15945-005
Sample ID: TP-11-SB (3-4)
Matrix: Solid Percent Dry: $64.3 \% \quad$ Results are expressed on a dry weight basis.
Sampled: 12/29/08 10:30
Parameter
Diesel Range Organics (DRO) C10-C28
Surrogate Recovery

2-fluorobiphenyI SUR
o-terphenyI SUR
naphthalene
2-methylnaphthalene
acenaphthylene
acenaphthene
dibenzofuran
fluorene
phenanthrene
anthracene
fluoranthene
pyrene
benzo(a)anthracene
chrysene
benzo(b)fluoranthene
benzo(k)fluoranthene
benzo(a)pyrene
indeno(1,2,3-cd)pyrene
dibenzo(a,h)anthracene
benzo(g,h,i)perylene
Surrogate Recovery
2-fluorobiphenyl SUR
o-terphenyl SUR

Result	Quant	Instr Dil'n		Prep	Analysis			
	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
< 290	290	ug/g	1	JLZ 1/5/09	1932	1/6/09	16:07	SW3550B8015B
Limits								
108	40-140	\%	1	JLZ 1/5/09	1932	1/6/09	16:07	SW3550B8015B
126	40-140	\%	1	JLZ 1/5/09	1932	1/6/09	16:07	SW3550B8015B
< 0.7	0.7	ug/g	1	AJD 1/5/09	1931	1/6/09	13:51	SW3550B8270C
< 0.7	0.7	ug/g	1	AJD 1/5/09	1931	1/6/09	13:51	SW3550B8270C
<0.7	0.7	ug/g	1	AJD 1/5/09	1931	1/6/09	13:51	SW3550B8270C
< 0.7	0.7	ug/g	1	AJD 1/5/09	1931	1/6/09	13:51	SW3550B8270C
< 0.7	0.7	ug/g	1	AJD 1/5/09	1931	1/6/09	13:51	SW3550B8270C
< 0.7	0.7	ug/g	1	AJD 1/5/09	1931	1/6/09	13:51	SW3550B8270C
< 0.7	0.7	ug/g	1	AJD 1/5/09	1931	1/6/09	13:51	SW3550B8270C
< 0.7	0.7	ug/g	1	AJD 1/5/09	1931	1/6/09	13:51	SW3550B8270C
< 0.7	0.7	ug / g	1	AJD 1/5/09	1931	1/6/09	13:51	SW3550B8270C
< 0.7	0.7	ug / g	1	AJD 1/5/09	1931	1/6/09	13:51	SW3550B8270C
<0.7	0.7	ug / g	1	AJD 1/5/09	1931	1/6/09	13:51	SW3550B8270C
<0.7	0.7	ug/g	1	AJD 1/5/09	1931	1/6/09	13:51	SW3550B8270C
<0.7	0.7	ug / g	1	AJD 1/5/09	1931	1/6/09	13:51	SW3550B8270C
<0.7	0.7	ug/g	1	AJD 1/5/09	1931	1/6/09	13:51	SW3550B8270C
<0.7	0.7	ug / g	1	AJD 1/5/09	1931	1/6/09	13:51	SW3550B8270C
< 0.7	0.7	ug/g	1	AJD 1/5/09	1931	1/6/09	13:51	SW3550B8270C
< 0.7	0.7	ug / g	1	AJD 1/5/09	1931	1/6/09	13:51	SW3550B8270C
< 0.7	0.7	ug/g	1	AJD 1/5/09	1931	1/6/09	13:51	SW3550B8270C
Limits								
104	43-116	\%	1	AJD 1/5/09	1931	1/6/09	13:51	SW3550B8270C
104	33-141	\%	1	AJD 1/5/09	1931	1/6/09	13:51	SW3550B8270C

Project ID: 04.0024843 .01 NHANG Armory Peterboro, NH
Lab ID: 15945
Lab Number: 15945-006
Sample ID: TP-11-SB (3-4) DUP
Matrix: Solid Percent Dry: 69.3 \% Results are expressed on a dry weight basis.
Sampled: 12/29/08 10:30
Parameter
Diesel Range Organics (DRO) C10-C28
Surrogate Recovery
2-fluorobiphenyI SUR
o-terphenyI SUR
naphthalene
2-methylnaphthalene
acenaphthylene
acenaphthene
dibenzofuran
fluorene
phenanthrene
anthracene
fluoranthene
pyrene
benzo(a)anthracene
chrysene
benzo(b)fluoranthene
benzo(k)fluoranthene
benzo(a)pyrene
indeno(1,2,3-cd)pyrene
dibenzo(a,h)anthracene
benzo(g,h,i)perylene
Surrogate Recovery
2-fluorobiphenyI SUR
o-terphenyI SUR

Result	Quant	Instr Dil'n		Prep	Analysis			
	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
<290	290	ug/g	1	JLZ 1/5/09	1932	1/6/09	16:21	SW3550B8015B
Limits								
103	40-140	\%	1	JLZ 1/5/09	1932	1/6/09	16:21	SW3550B8015B
112	40-140	\%	1	JLZ 1/5/09	1932	1/6/09	16:21	SW3550B8015B
<0.7	0.7	ug/g	1	AJD 1/5/09	1931	1/6/09	14:29	SW3550B8270C
<0.7	0.7	ug/g	1	AJD 1/5/09	1931	1/6/09	14:29	SW3550B8270C
<0.7	0.7	ug/g	1	AJD 1/5/09	1931	1/6/09	14:29	SW3550B8270C
<0.7	0.7	ug/g	1	AJD 1/5/09	1931	1/6/09	14:29	SW3550B8270C
<0.7	0.7	ug/g	1	AJD 1/5/09	1931	1/6/09	14:29	SW3550B8270C
<0.7	0.7	ug/g	1	AJD 1/5/09	1931	1/6/09	14:29	SW3550B8270C
<0.7	0.7	ug/g	1	AJD 1/5/09	1931	1/6/09	14:29	SW3550B8270C
<0.7	0.7	ug/g	1	AJD 1/5/09	1931	1/6/09	14:29	SW3550B8270C
<0.7	0.7	ug/g	1	AJD 1/5/09	1931	1/6/09	14:29	SW3550B8270C
<0.7	0.7	ug/g	1	AJD 1/5/09	1931	1/6/09	14:29	SW3550B8270C
<0.7	0.7	ug/g	1	AJD 1/5/09	1931	1/6/09	14:29	SW3550B8270C
<0.7	0.7	ug / g	1	AJD 1/5/09	1931	1/6/09	14:29	SW3550B8270C
<0.7	0.7	ug / g	1	AJD 1/5/09	1931	1/6/09	14:29	SW3550B8270C
<0.7	0.7	ug/g	1	AJD 1/5/09	1931	1/6/09	14:29	SW3550B8270C
<0.7	0.7	ug / g	1	AJD 1/5/09	1931	1/6/09	14:29	SW3550B8270C
<0.7	0.7	ug / g	1	AJD 1/5/09	1931	1/6/09	14:29	SW3550B8270C
< 0.7	0.7	ug/g	1	AJD 1/5/09	1931	1/6/09	14:29	SW3550B8270C
<0.7	0.7	ug / g	1	AJD 1/5/09	1931	1/6/09	14:29	SW3550B8270C
Limits								
93	43-116	\%	1	AJD 1/5/09	1931	1/6/09	14:29	SW3550B8270C
87	33-141	\%	1	AJD 1/5/09	1931	1/6/09	14:29	SW3550B8270C

Project ID: 04.0024843 .01 NHANG Armory Peterboro, NH
Lab ID: 15945
Lab Number: 15945-010
Sample ID: TP-1-SB (2.5-4.5)
Matrix: Solid Percent Dry: 83.3 \% Results are expressed on a dry weight basis.
Sampled: 12/29/08 12:45

Sampled: 12/29/08 12:45		Quant		Instr Dil'n		Prep				
Parameter	Result	Limit	Units	Factor	Analyst	Date	Batch	Date	Time	Reference
Diesel Range Organics (DRO) C10-C28	<230	230	ug/g	1		1/5/09	1932	1/6/09	16:35	SW3550B8015B
Surrogate Recovery		Limits								
2-fluorobiphenyl SUR	\#	40-140	\%	1	JLZ	1/5/09	1932	1/6/09	16:35	SW3550B8015B
o-terphenyl SUR	113	40-140	\%	1	JLZ	1/5/09	1932	1/6/09	16:35	SW3550B8015B

\# = The surrogate could not be distinguished. Re-extraction showed similar results. Matrix interference suspected.

naphthalene	< 0.6	0.6	ug/g	1	AJD	1/5/09	1931	1/6/09	15:06	SW3550B8270C
2-methylnaphthalene	<0.6	0.6	ug / g	1	AJD	1/5/09	1931	1/6/09	15:06	SW3550B8270C
acenaphthylene	<0.6	0.6	ug/g	1	AJD	1/5/09	1931	1/6/09	15:06	SW3550B8270C
acenaphthene	<0.6	0.6	ug/g	1	AJD	1/5/09	1931	1/6/09	15:06	SW3550B8270C
dibenzofuran	<0.6	0.6	ug/g	1	AJD	1/5/09	1931	1/6/09	15:06	SW3550B8270C
fluorene	<0.6	0.6	ug/g	1	AJD	1/5/09	1931	1/6/09	15:06	SW3550B8270C
phenanthrene	<0.6	0.6	ug/g	1	AJD	1/5/09	1931	1/6/09	15:06	SW3550B8270C
anthracene	<0.6	0.6	ug/g	1	AJD	1/5/09	1931	1/6/09	15:06	SW3550B8270C
fluoranthene	<0.6	0.6	ug/g	1	AJD	1/5/09	1931	1/6/09	15:06	SW3550B8270C
pyrene	<0.6	0.6	ug/g	1	AJD	1/5/09	1931	1/6/09	15:06	SW3550B8270C
benzo(a)anthracene	<0.6	0.6	ug/g	1	AJD	1/5/09	1931	1/6/09	15:06	SW3550B8270C
chrysene	< 0.6	0.6	ug/g	1	AJD	1/5/09	1931	1/6/09	15:06	SW3550B8270C
benzo(b)fluoranthene	<0.6	0.6	ug/g	1	AJD	1/5/09	1931	1/6/09	15:06	SW3550B8270C
benzo(k)fluoranthene	<0.6	0.6	ug/g	1	AJD	1/5/09	1931	1/6/09	15:06	SW3550B8270C
benzo(a)pyrene	< 0.6	0.6	ug/g	1	AJD	1/5/09	1931	1/6/09	15:06	SW3550B8270C
indeno(1,2,3-cd)pyrene	<0.6	0.6	ug/g	1	AJD	1/5/09	1931	1/6/09	15:06	SW3550B8270C
dibenzo(a,h)anthracene	<0.6	0.6	ug/g	1	AJD	1/5/09	1931	1/6/09	15:06	SW3550B8270C
benzo(g,h,i)perylene	<0.6	0.6	ug/g	1	A.JD	1/5/09	1931	1/6/09	15:06	SW3550B8270C
Surrogate Recovery		Limits								
2-fluorobiphenyl SUR	94	43-116	\%	1	AJD	1/5/09	1931	1/6/09	15:06	SW3550B8270C
o-terphenyl SUR	87	33-141	\%	1	AJD	1/5/09	1931	1/6/09	15:06	SW3550B8270C

Project ID: 04.0024843.01 NHANG Armory Peterboro, NH
Lab ID: 15945
Lab Number: 15945-011
Sample ID: TP-4A-SB (2-3)
Matrix: Solid Percent Dry: 89.2 \%
Results are expressed on a dry weight basis.
Sampled: 12/29/08 14:30
Parameter
Diesel Range Organics (DRO) C10-C28
Surrogate Recovery
2-fluorobiphenyl SUR
o-terphenyl SUR
naphthalene
2-methylnaphthalene
acenaphthylene
acenaphthene
dibenzofuran
fluorene
phenanthrene
anthracene
fluoranthene
pyrene
benzo(a)anthracene
chrysene
benzo(b)fluoranthene
benzo(k)fluoranthene
benzo(a)pyrene
indeno(1,2,3-cd)pyrene
dibenzo(a,h)anthracene benzo(g,h,i)perylene Surrogate Recovery 2-fluorobiphenyI SUR
o-terphenyI SUR

Result	Quant	Instr Dil'n		Prep	Analysis			
	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
<210	210	ug/g	1	JLZ 1/5/09	1932	1/6/09	16:48	SW3550B8015B
Limits								
97	40-140	\%	1	JLZ 1/5/09	1932	1/6/09	16:48	SW3550B8015B
108	40-140	\%	1	JLZ 1/5/09	1932	1/6/09	16:48	SW3550B8015B
<0.5	0.5	ug/g	1	AJD 1/5/09	1931	1/6/09	15:44	SW3550B8270C
< 0.5	0.5	ug/g	1	AJD 1/5/09	1931	1/6/09	15:44	SW3550B8270C
<0.5	0.5	ug/g	1	AJD 1/5/09	1931	1/6/09	15:44	SW3550B8270C
< 0.5	0.5	ug/g	1	A.JD 1/5/09	1931	1/6/09	15:44	SW3550B8270C
< 0.5	0.5	ug/g	1	AJD 1/5/09	1931	1/6/09	15:44	SW3550B8270C
<0.5	0.5	ug/g	1	AJD 1/5/09	1931	1/6/09	15:44	SW3550B8270C
<0.5	0.5	ug/g	1	AJD 1/5/09	1931	1/6/09	15:44	SW3550B8270C
<0.5	0.5	ug/g	1	AJD 1/5/09	1931	1/6/09	15:44	SW3550B8270C
<0.5	0.5	ug/g	1	AJD 1/5/09	1931	1/6/09	15:44	SW3550B8270C
<0.5	0.5	ug/g	1	AJD 1/5/09	1931	1/6/09	15:44	SW3550B8270C
< 0.5	0.5	ug/g	1	AJD 1/5/09	1931	1/6/09	15:44	SW3550B8270C
<0.5	0.5	ug/g	1	AJD 1/5/09	1931	1/6/09	15:44	SW3550B8270C
<0.5	0.5	ug/g	1	AJD 1/5/09	1931	1/6/09	15:44	SW3550B8270C
<0.5	0.5	ug/g	1	AJD 1/5/09	1931	1/6/09	15:44	SW3550B8270C
<0.5	0.5	ug/g	1	AJD 1/5/09	1931	1/6/09	15:44	SW3550B8270C
< 0.5	0.5	ug/g	1	AJD 1/5/09	1931	1/6/09	15:44	SW3550B8270C
<0.5	0.5	ug/g	1	AJD 1/5/09	1931	1/6/09	15:44	SW3550B8270C
<0.5	0.5	ug/g	1	AJD 1/5/09	1931	1/6/09	15:44	SW3550B8270C
Limits								
82	43-116	\%	1	AJD 1/5/09	1931	1/6/09	15:44	SW3550B8270C
78	33-141	\%	1	AJD 1/5/09	1931	1/6/09	15:44	SW3550B8270

Project ID: 04.0024843 .01 NHANG Armory Peterboro, NH
Lab ID: 15945
Lab Number: 15945-002
Sample ID: TP-7-SB (4.5-6.5)
Matrix: Solid Percent Dry: 80.6 \% Results are expressed on a dry weight basis.
Sampled: 12/29/08 9:00

Parameter	Result	Limit	Units	Factor	Analyst	Date	Batch	Date	Time	Reference
Arsenic	2.4	0.8	ug / g	1	BJS	$1 / 8 / 09$	1935	$1 / 8 / 09$	$16: 10$	SW3051A6010B
Barium	54	4	ug / g	1	BJS	$1 / 8 / 09$	1935	$1 / 8 / 09$	$16: 10$	SW3051A6010B
Cadmium	<0.2	0.2	ug / g	1	BJS	$1 / 8 / 09$	1935	$1 / 8 / 09$	$16: 10$	SW3051A6010B
Chromium	14	4	ug / g	1	BJS	$1 / 8 / 09$	1935	$1 / 8 / 09$	$16: 10$	SW3051A6010B
Lead	$\mathbf{4 . 1}$	0.8	ug / g	$\mathbf{1}$	BJS	$1 / 8 / 09$	1935	$1 / 8 / 09$	$16: 10$	SW3051A6010B
Mercury	<0.02	0.02	ug / g	$\mathbf{1}$	BJS	0900061	$1 / 9 / 09$		SW7470A	
Selenium	<2	2	ug / g	1	BJS	$1 / 8 / 09$	1935	$1 / 8 / 09$	$16: 10$	SW3051A6010B
Silver	$\mathbf{0 . 3}$	0.3	ug / g	$\mathbf{1}$	BJS	$1 / 8 / 09$	1935	$1 / 8 / 09$	$16: 10$	SW3051A6010B

Lab Number: 15945-003
Sample ID: TP-16-SS (0-0.5)
Matrix: Solid Percent Dry: 70.8 \% Results are expressed on a dry weight basis.
Sampled: 12/29/08 9:50
Parameter
Arsenic
Barium

	Quant	Instr Dil'n			Prep	Analysis			
Result	Limit	Units	Factor	Analyst	Date	Batch	Date	Time	Reference
5.4	0.8	ug/g	1	BJS	1/8/09	1935	1/8/09	16:16	SW3051A6010B
46	4	ug/g	1	BJS	1/8/09	1935	1/8/09	16:16	SW3051A6010B
<0.2	0.2	ug / g	1	BJS	1/8/09	1935	1/8/09	16:16	SW3051A6010B
17	4	ug/g	1	BJS	1/8/09	1935	1/8/09	16:16	SW3051A6010B
18	0.8	ug/g	1	BJS	1/8/09	1935	1/8/09	16:16	SW3051A6010B
$<0.02 \mathrm{M}$	0.02	ug/g	1	BJS		0900061	1/9/09		SW7470A

M : Matrix spike recovery was 40%, outside the control limits of $75-125 \%$. Matrix interference suspected.

Selenium	<2	2	ug / g	1	BJS	$1 / 8 / 09$	1935	$1 / 8 / 09$	$16: 16$	SW3051A6010B
Silver	0.4	0.2	ug / g	1	BJS	$1 / 8 / 09$	1935	$1 / 8 / 09$	$16: 16$	SW3051A6010B

Lab Number: 15945-005
Sample ID: TP-11-SB (3-4)

Matrix: Solid Percent Dry: 64.3 \%
Sampled: 12/29/08 10:30
Parameter
Arsenic
Barium
Cadmium
Chromium
Lead
Mercury
Selenium
Silver

Results are expressed on a dry weight basis.

	Quant	Instr Dil'n			Prep	Analysis			
Result	Limit	Units	Factor	Analyst	t Date	Batch	Date	Time	Reference
13	0.9	ug/g	1	BJS	1/8/09	1935	1/8/09	16:21	SW3051A6010B
32	5	ug/g	1	BJS	1/8/09	1935	1/8/09	16:21	SW3051A6010B
< 0.2	0.2	ug/g	1	BJS	1/8/09	1935	1/8/09	16:21	SW3051A6010B
11	5	ug/g	1	BJS	1/8/09	1935	1/8/09	16:21	SW3051A6010B
14	0.9	ug/g	1	BJS	1/8/09	1935	1/8/09	16:21	SW3051A6010B
0.04	0.03	ug/g	1	BJS		0900061	1/9/09		SW7470A
<2	2	ug/g	1	BJS 1	1/8/09	1935	1/8/09	16:21	SW3051A6010B
<0.3	0.3	ug/g	1	BJS 1	1/8/09	1935	1/8/09	16:21	SW3051A6010B

Project ID: 04.0024843 .01 NHANG Armory Peterboro, NH
Lab ID: 15945
Lab Number: 15945-006
Sample ID: TP-11-SB (3-4) DUP
Matrix: Solid Percent Dry: 69.3 \% Results are expressed on a dry weight basis.
Sampled: 12/29/08 10:30
Parameter
Arsenic
Barium

Result	Quant	Instr Dil'n			Prep	Analysis			
	Limit	Units	Factor	Analyst	t Date	Batch	Date	Time	Reference
26	0.8	ug/g	1	BJS	1/8/09	1935	1/8/09	16:26	SW3051A6010B
34	4	ug/g	1	BJS	1/8/09	1935	1/8/09	16:26	SW3051A6010B
< 0.2	0.2	ug/g	1	BJS	1/8/09	1935	1/8/09	16:26	SW3051A6010B
12	4	ug/g	1	BJS	1/8/09	1935	1/8/09	16:26	SW3051A6010B
16	0.8	ug/g	1	BJS	1/8/09	1935	1/8/09	16:26	SW3051A6010B
0.04	0.03	ug / g	1	BJS		0900061	1/9/09		SW7470A
<2	2	ug / g	1	BJS 1	1/8/09	1935	1/8/09	16:26	SW3051A6010B
<0.3	0.3	ug/g	1	BJS 1	1/8/09	1935	1/8/09	16:26	SW3051A6010B

Lab Number: 15945-010
Sample ID: TP-1-SB (2.5-4.5)
Matrix: Solid Percent Dry: 83.3 \% Results are expressed on a dry weight basis.
Sampled: 12/29/08 12:45

Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
Arsenic	3.5	0.7	ug / g	1	BJS	$1 / 8 / 09$	1935	$1 / 8 / 09$	$16: 31$
SW3051A6010B									
Barium	34	4	ug / g	1	BJS	$1 / 8 / 09$	1935	$1 / 8 / 09$	$16: 31$
SW3051A6010B									
Cadmium	<0.2	0.2	ug / g	1	BJS	$1 / 8 / 09$	1935	$1 / 8 / 09$	$16: 31$
SW3051A6010B									
Chromium	10	4	ug / g	1	BJS	$1 / 8 / 09$	1935	$1 / 8 / 09$	$16: 31$
SW3051A6010B									
Lead	4.5	0.7	ug / g	1	BJS	$1 / 8 / 09$	1935	$1 / 8 / 09$	$16: 31$
SW3051A6010B									
Mercury	<0.01	0.01	ug / g	1	BJS	0900061	$1 / 9 / 09$		SW7470A
Selenium	<2	2	ug / g	1	BJS	$1 / 8 / 09$	1935	$1 / 8 / 09$	$16: 31$
SW3051A6010B									
Silver	<0.3	0.3	ug / g	1	BJS	$1 / 8 / 09$	1935	$1 / 8 / 09$	$16: 31$

Lab Number: 15945-011
Sample ID: TP-4A-SB (2-3)
Matrix: Solid Percent Dry: $89.2 \% \quad$ Results are expressed on a dry weight basis.
Sampled: 12/29/08 14:30
Parameter
Arsenic
Barium
Cadmium
Chromium
Lead
Mercury
Selenium
Silver

	Quant	Instr Dil'n			Prep	Analysis			
Result	Limit	Units	Factor	Analyst	t Date	Batch	Date	Time	Reference
3.5	0.6	ug/g	1	BJS	1/8/09	1935	1/8/09	16:36	SW3051A6010B
42	3	ug/g	1	BJS	1/8/09	1935	1/8/09	16:36	SW3051A6010B
0.2	0.2	ug/g	1	BJS	1/8/09	1935	1/8/09	16:36	SW3051A6010B
5	3	ug/g	1	BJS	1/8/09	1935	1/8/09	16:36	SW3051A6010B
2.4	0.6	ug/g	1	BJS	1/8/09	1935	1/8/09	16:36	SW3051A6010
< 0.01	0.01	ug/g	1	BJS		0900061	1/9/09		SW7470A
<2	2	ug/g	1	BJS 1	1/8/09	1935	1/8/09	16:36	SW3051A6010B
<0.3	0.3	ug/g	1	BJS 1	1/8/09	1935	1/8/09	16:36	SW3051A601

Quality Control Report

Case Narrative

Lab \# 15945

Sample Receiving and Chain of Custody Discrepancies

Samples were received in acceptable condition, at 4 degrees C, on ice, and in accordance with sample handling, preservation and integrity guidelines.
Several samples were received on hold and later cancelled. A revised chain of custody is included with the report.

Calibration

No exceptions noted.

Method Blank

No exceptions noted.

Surrogate Recoveries

SVOC: The surrogate for sample 15945-003 was outside the acceptance limits as a result of co-eluting hydrocarbons.
SVOC: The surrogate for sample $15945-010$ was unable to be distinguished. The sample was re-extracted and produced similar results. Matrix interference suspected.

Laboratory Control Sample Results

VOC solid: Due to standard availability the solid LCS/LCSD contains only a subset of the target analytes. The results are acceptable. To demonstrate acceptable method performance for all analytes, an aqueous LCS/LCSD is also provided. The results are acceptable.
VOC: The LCSD 1930 did not meet the acceptance criteria for 2,2-dichloropropane. This compounds is known to be problematic in the method. The recovery was acceptable in the LCS.

Matrix Spike/Matrix Spike Duplicate/Duplicate Results
Metals: The percent recovery for mercury in the matrix spike (15945-003) was 40%, outside the acceptance criteria of $75-125 \%$. All other batch QC was within acceptance. Matrix interference is suspected.
SVOC: The percent recovery for the matrix spike was below the acceptance criteria of $40-140 \%$ for several PAH compounds. The associated QC was within acceptance. Matrix heterogeneity suspected.

Other

QC: A sample association table is provided for cross reference of sample and lab IDs and associated quality control samples.
Quantitation Limits: Due to the amount of solid used in preparation and the percent dry weight, some quantitation limits are higher than those stated in the QAPP. There appears to be several typos in the table containing the VOC quantitation limits. The reported quantitation limits are below the listed action limits.

Reporting Limits: Dilutions performed during the analysis are noted on the result pages.

No other exceptions noted.

- QC Association Table -

Analysis		QC Number	Field ID	Lab ID
DRO in solids by 8015B SW3550B8015B				
		1932	TP-7-SB (4.5-6.5)	15945-002
			TP-16-SS (0-0.5)	15945-003
			TP-11-SB (3-4)	15945-005
			TP-11-SB (3-4) DUP	15945-006
			TP-4A-SB (2-3)	15945-011
PAHs in solid by 8270C SW3550B8270C				
		1931	TP-7-SB (4.5-6.5)	15945-002
			TP-16-SS (0-0.5)	15945-003
			TP-11-SB (3-4)	15945-005
			TP-11-SB (3-4) DUP	15945-006
			TP-1-SB (2,5-4.5)	15945-010
			TP-4A-SB (2-3)	15945-011
VOCs in solid by 8260B SW5035A8260B				
		1930	TP-7-SB (4.5-6.5)	15945-002
			TP-11-SB (3-4)	15945-005
			TP-11-SB (3-4) DUP	15945-006
			TP-1-SB (2.5-4.5)	15945-010
			TP-4A-SB (2-3)	15945-011
			Trip Blank	15945-012

RL Resource Laboratories, LLC

- QC Report -

Method QCID	Parameter Associated Sample	Result Units	Amt Added \%R	Limit	RPD	RPD Limit
SW5035A8260B BLK1930	dichlorodifluoromethane	< 2 ugh				
	chloromethane	< $2 \mathrm{ug} / \mathrm{L}$				
	vinyl chloride	< $2 \mathrm{ug} / \mathrm{L}$				
	bromomethane	< $2 \mathrm{ug} / \mathrm{L}$				
	chloroethane	< $2 \mathrm{ug} / \mathrm{L}$				
	trichlorofluoromethane	< $2 \mathrm{ug} / \mathrm{L}$				
	diethyl ether	< $10 \mathrm{ug} / \mathrm{L}$				
	acetone	< $10 \mathrm{ug} / \mathrm{L}$				
	1,1-dichloroethene	< 1 ugh				
	methylene chloride	< 5 ug/L				
	carbon disulfide	< $2 \mathrm{ug} / \mathrm{L}$				
	methyl t-butyl ether (MTBE)	< $2 \mathrm{ug} / \mathrm{L}$				
	trans-1,2-dichloroethene	< $2 \mathrm{ug} / \mathrm{L}$				
	isopropyl ether (DIPE)	< $2 \mathrm{ug} / \mathrm{L}$				
	ethyl t-butyl ether (ETBE)	< $2 \mathrm{ug} / \mathrm{L}$				
	1,1-dichloroethane	< $2 \mathrm{ug} / \mathrm{L}$				
	t-butanol (TBA)	< $40 \mathrm{ug} / \mathrm{L}$				
	2-butanone (MEK)	< $10 \mathrm{ug} / \mathrm{L}$				
	2,2-dichloropropane	< $2 \mathrm{ug} / \mathrm{L}$				
	cis-1,2-dichloroethene	< $2 \mathrm{ug} / \mathrm{L}$				
	chloroform	< $2 \mathrm{ug} / \mathrm{L}$				
	bromochloromethane	< $2 \mathrm{ug} / \mathrm{L}$				
	tetrahydrofuran (THF)	< $10 \mathrm{ug} / \mathrm{L}$				
	1,1,1-trichloroethane	< $2 \mathrm{ug} / \mathrm{L}$				
	1,1-dichloropropene	< $2 \mathrm{ug} / \mathrm{L}$				
	t-amyl-methyl ether (TAME)	< $2 \mathrm{ug} / \mathrm{L}$				
	carbon tetrachloride	< $2 \mathrm{ug} / \mathrm{L}$				
	1,2-dichloroethane	< $2 \mathrm{ug} / \mathrm{L}$				
	benzene	< $2 \mathrm{ug} / \mathrm{L}$				
	trichloroethene	< $2 \mathrm{ug} / \mathrm{L}$				
	1,2-dichloropropane	< $2 \mathrm{ug} / \mathrm{L}$				
	bromodichloromethane	< $2 \mathrm{ug} / \mathrm{L}$				
	1,4-dioxane	< $50 \mathrm{ugh} / \mathrm{l}$				
	dibromomethane	< $2 \mathrm{ug} / \mathrm{L}$				
	4-methyl-2-pentanone (MIBK)	< $10 \mathrm{ug} / \mathrm{L}$				
	cis-1,3-dichloropropene	< 2 ug/L				
	toluene	< $2 \mathrm{ug} / \mathrm{L}$				
	trans-1,3-dichloropropene	< $2 \mathrm{ug} / \mathrm{L}$				
	2-hexanone	< $10 \mathrm{ug} / \mathrm{L}$				
	1,1,2-trichloroethane	< $2 \mathrm{ug} / \mathrm{L}$				
	1,3-dichloropropane	< $2 \mathrm{ug} / \mathrm{L}$				
	tetrachloroethene	< $2 \mathrm{ug} / \mathrm{L}$				
	dibromochloromethane	< $2 \mathrm{ug} / \mathrm{L}$				
	1,2-dibromoethane (EDB)	< $2 \mathrm{ug} / \mathrm{L}$				
	chlorobenzene	< 2 ugil				
	1,1,1,2-tetrachloroethane	< $2 \mathrm{ug} / \mathrm{L}$				
	ethylbenzene	< $2 \mathrm{ug} / \mathrm{L}$				
	m\&p-xylenes	< 2 ug/L				
	o-xylene	< $2 \mathrm{ug} / \mathrm{L}$				
	styrene	< 2 ug/L				
	bromoform	< $2 \mathrm{ug} / \mathrm{L}$				

Method QCID	Parameter Associated Sample	Result Units Amt Added \%R	Limit	RPD	RPD Limit
SW5035A8260B BLK1930	isopropylbenzene	< $2 \mathrm{ug} / \mathrm{L}$			
	1,1,2,2-tetrachloroethane	< $2 \mathrm{ug} / \mathrm{L}$			
	1,2,3-trichloropropane	< $2 \mathrm{ug} / \mathrm{L}$			
	n-propylbenzene	< $2 \mathrm{ug} / \mathrm{L}$			
	bromobenzene	< 2 uglh			
	1,3,5-trimethylbenzene	< $2 \mathrm{ug} / \mathrm{L}$			
	2-chlorotoluene	< $2 \mathrm{ug} / \mathrm{L}$			
	4-chlorotoluene	< 2 ugh			
	tert-butylbenzene	< $2 \mathrm{ug} / \mathrm{L}$			
	1,2,4-rimethylbenzene	< $2 \mathrm{ug} / \mathrm{L}$			
	sec-butylbenzene	< $2 \mathrm{ug} / \mathrm{L}$			
	1,3-dichlorobenzene	< $2 \mathrm{ug} / \mathrm{L}$			
	4-isopropyitoluene	< $2 \mathrm{ug} / \mathrm{L}$			
	1,4-dichlorobenzene	< $2 \mathrm{ug} / \mathrm{L}$			
	1,2-dichlorobenzene	< $2 \mathrm{ug} / \mathrm{L}$			
	n-butylbenzene	< $2 \mathrm{ug} / \mathrm{L}$			
	1,2-dibromo-3-chloropropane	< $2 \mathrm{ug} / \mathrm{L}$			
	1,2,4-trichlorobenzene	< $2 \mathrm{ug} / \mathrm{L}$			
	1,3,5-trichlorobenzene	< $2 \mathrm{ug} / \mathrm{L}$			
	hexachlorobutadiene	< $2 \mathrm{ug} / \mathrm{L}$			
	naphthalene	< $5 \mathrm{ug} / \mathrm{L}$			
	1,2,3-rrichlorobenzene	< $2 \mathrm{ug} / \mathrm{L}$			
	dibromofluoromethane SUR	96%	$78 \quad 114$		
	toluene-D8 SUR	101%	88110		
	4-bromofluorobenzene SUR	88 \%	$86 \quad 115$		

Method QCID	Parameter Associated Sample	Result Units	Amt Added	\%R	Limit		RPD	RPD Limit
SW5035A8260B LCS 1930	dichlorodifluoromethane	$17 \mathrm{ug} / \mathrm{L}$	20	83	70	130		
	chloromethane	$20 \mathrm{ug} / \mathrm{L}$	20	99	70	130		
	vinyl chloride	$19 \mathrm{ug} / \mathrm{L}$	20	96	70	130		
	bromomethane	23 ugh	20	115	70	130		
	chloroethane	$19 \mathrm{ug} / \mathrm{L}$	20	94	70	130		
	trichlorofluoromethane	$20 \mathrm{ug} / \mathrm{L}$	20	99	70	130		
	diethyl ether	$20 \mathrm{ug} / \mathrm{L}$	20	101	70	130		
	acetone	$21 \mathrm{ug} / \mathrm{L}$	20	107	70	130		
	1,1-dichloroethene	$19 \mathrm{ug} / \mathrm{L}$	20	97	70	130		
	methylene chloride	$20 \mathrm{ug} / \mathrm{L}$	20	99	70	130		
	carbon disulfide	$17 \mathrm{ug} / \mathrm{L}$	20	85	70	130		
	methyl t-butyl ether (MTBE)	$21 \mathrm{ug} / \mathrm{L}$	20	106	70	130		
	trans-1,2-dichloroethene	$20 \mathrm{ug} / \mathrm{L}$	20	98	70	130		
	isopropyl ether (DIPE)	21 ug/L	20	104	70	130		
	ethyl t-butyl ether (ETBE)	$21 \mathrm{ug} / \mathrm{L}$	20	103	70	130		
	1,1-dichloroethane	$20 \mathrm{ug} / \mathrm{L}$	20	102	70	130		
	t-butanol (TBA)	$100 \mathrm{ug} / \mathrm{L}$	100	103	70	130		
	2-butanone (MEK)	$21 \mathrm{ug} / \mathrm{L}$	20	106	70	130		
	2,2-dichloropropane	21 ug/L	20	103	70	130		
	cis-1,2-dichloroethene	$20 \mathrm{ug} / \mathrm{L}$	20	101	70	130		
	chloroform	$20 \mathrm{ug} / \mathrm{L}$	20	100	70	130		
	bromochloromethane	$20 \mathrm{ug} / \mathrm{L}$	20	102	70	130		
	tetrahydrofuran (THF)	$21 \mathrm{ug} / \mathrm{L}$	20	103	70	130		
	1,1,1-trichloroethane	21 ug/L	20	103	70	130		
	1,1-dichloropropene	$21 \mathrm{ug} / \mathrm{L}$	20	105	70	130		
	t-amyl-methyl ether (TAME)	21 ug/L	20	103	70	130		
	carbon tetrachloride	$19 \mathrm{ug} / \mathrm{L}$	20	95	70	130		
	1,2-dichloroethane	$21 \mathrm{ug} / \mathrm{L}$	20	103	70	130		
	benzene	$21 \mathrm{ug} / \mathrm{L}$	20	103	70	130		
	trichloroethene	$20 \mathrm{ug} / \mathrm{L}$	20	101	70	130		
	1,2-dichloropropane	$20 \mathrm{ug} / \mathrm{L}$	20	100	70	130		
	bromodichloromethane	$19 \mathrm{ug} / \mathrm{L}$	20	94	70	130		
	1,4-dioxane	< $50 \mathrm{ugh} / \mathrm{L}$	40	114				
	dibromomethane	$20 \mathrm{ug} / \mathrm{L}$	20	100	70	130		
	4-methyl-2-pentanone (MIBK)	$19 \mathrm{ug} / \mathrm{L}$	20	96	70	130		
	cis-1,3-dichloropropene	$18 \mathrm{ug} / \mathrm{L}$	20	91	70	130		
	toluene	$20 \mathrm{ug} / \mathrm{L}$	20	101	70	130		
	trans-1,3-dichloropropene	$17 \mathrm{ug} / \mathrm{L}$	20	85	70	130		
	2-hexanone	$19 \mathrm{ug} / \mathrm{L}$	20	95	70	130		
	1,1,2-trichloroethane	19 ugh	20	97	70	130		
	1,3-dichloropropane	$21 \mathrm{ug} / \mathrm{L}$	20	104	70	130		
	tetrachloroethene	21 ug/h	20	107	70	130		
	dibromochloromethane	$18 \mathrm{ug} / \mathrm{L}$	20	88	70	130		
	1,2-dibromoethane (EDB)	19 ugh	20	94	70	130		
	chlorobenzene	$20 \mathrm{ug} / \mathrm{L}$	20	102	70	130		
	1,1,1,2-tetrachloroethane	$18 \mathrm{ug} / \mathrm{L}$	20	92	70	130		
	ethylbenzene	$20 \mathrm{ug} / \mathrm{L}$	20	102	70	130		
	m\&p-xylenes	$40 \mathrm{ug} / \mathrm{L}$	40	101	70	130		
	o-xylene	$20 \mathrm{ug} / \mathrm{L}$	20	102	70	130		
	styrene	$20 \mathrm{ug} / \mathrm{L}$	20	102	70	130		
	bromoform	$17 \mathrm{ug} / \mathrm{L}$	20	86	70	130		
	isopropylbenzene	20 ug/L	20	102	70	130		
	1,1,2,2-tetrachloroethane	$22 \mathrm{ug} / \mathrm{L}$	20	112	70	130		

Method QCID	Parameter Associated Sample	Result Units	Amt Added	\%R	Limit		RPD	RPD Limit
SW5035A8260B LCS1930	1,2,3-trichloropropane	$23 \mathrm{ug} / \mathrm{L}$	20	113	70	130		
	n-propylbenzene	$24 \mathrm{ug} / \mathrm{L}$	20	120	70	130		
	bromobenzene	$23 \mathrm{ug} / \mathrm{L}$	20	115	70	130		
	1,3,5-rimethylbenzene	$24 \mathrm{ug} / \mathrm{L}$	20	119	70	130		
	2-chlorotoluene	$22 \mathrm{ug} / \mathrm{L}$	20	112	70	130		
	4-chlorotoluene	$24 \mathrm{ug} / \mathrm{L}$	20	121	70	130		
	tert-butylbenzene	$23 \mathrm{ug} / \mathrm{L}$	20	113	70	130		
	1,2,4-trimethylbenzene	$23 \mathrm{ug} / \mathrm{L}$	20	117	70	130		
	sec-butylbenzene	$22 \mathrm{ug} / \mathrm{L}$	20	111	70	130		
	1,3-dichlorobenzene	$23 \mathrm{ug} / \mathrm{L}$	20	115	70	130		
	4-isopropyltoluene	$24 \mathrm{ug} / \mathrm{L}$	20	119	70	130		
	1,4-dichlorobenzene	22 ug/L	20	110	70	130		
	1,2-dichlorobenzene	$23 \mathrm{ug} / \mathrm{L}$	20	117	70	130		
	n-butylbenzene	$24 \mathrm{ug} / \mathrm{L}$	20	119	70	130		
	1,2-dibromo-3-chloropropane	$21 \mathrm{ug} / \mathrm{L}$	20	108	70	130		
	1,2,4-trichlorobenzene	21 ug/	20	106	70	130		
	1,3,5-trichlorobenzene	$22 \mathrm{ug} / \mathrm{L}$	20	111	70	130		
	hexachlorobutadiene	24 ug/L	20	119	70	130		
	naphthalene	$20 \mathrm{ug} / \mathrm{L}$	20	100	70	130		
	1,2,3-trichlorobenzene	22 ug/L	20	109	70	130		
	dibromofluoromethane SUR	97%			78	114		
	toluene-D8 SUR	99%			88	110		
	4-bromofluorobenzene SUR	98%			86	115		

Method QCID	Parameter Associated Sample	Result Units	Amt Added	\%R	Limit		RPD	RPD Limit
SW5035A8260B LCSD1930	dichlorodifluoromethane	$16 \mathrm{ug} / \mathrm{L}$	20	78	70	130	6	20
	chloromethane	17 ug/	20	87	70	130	13	20
	vinyl chloride	$19 \mathrm{ug} / \mathrm{L}$	20	94	70	130	2	20
	bromomethane	$22 \mathrm{ug} / \mathrm{L}$	20	112	70	130	3	20
	chloroethane	18 ugh	20	88	70	130	6	20
	trichlorofluoromethane	$19 \mathrm{ug} / \mathrm{L}$	20	95	70	130	5	20
	diethyl ether	$21 \mathrm{ug} / \mathrm{L}$	20	103	70	130	1	20
	acetone	$23 \mathrm{ug} / \mathrm{L}$	20	116	70	130	8	20
	1,1-dichloroethene	$17 \mathrm{ug} / \mathrm{L}$	20	85	70	130	13	20
	methylene chloride	$20 \mathrm{ug} / \mathrm{L}$	20	99	70	130	0	20
	carbon disulfide	16 ugh	20	82	70	130	3	20
	methyl t-butyl ether (MTBE)	$22 \mathrm{ug} / \mathrm{L}$	20	108	70	130	2	20
	trans-1,2-dichloroethene	$19 \mathrm{ug} / \mathrm{L}$	20	96	70	130	2	20
	isopropyl ether (DIPE)	$21 \mathrm{ug} / \mathrm{L}$	20	106	70	130	2	20
	ethyl l-butyl ether (ETBE)	$21 \mathrm{ug} / \mathrm{L}$	20	106	70	130	2	20
	1,1-dichloroethane	$20 \mathrm{ug} / \mathrm{L}$	20	99	70	130	3	20
	t-butanol (TBA)	110 ug/L	100	107	70	130	4	20
	2-butanone (MEK)	21 ug/L	20	106	70	130	1	20
	2,2-dichloropropane	$13 \mathrm{ug} / \mathrm{L}$	20	63	70	130	47	* 20
	cis-1,2-dichloroethene	$20 \mathrm{ug} / \mathrm{L}$	20	98	70	130	3	20
	chloroform	$19 \mathrm{ug} / \mathrm{L}$	20	96	70	130	3	20
	bromochloromethane	20 ug/L	20	101	70	130	2	20
	tetrahydrofuran (THF)	$21 \mathrm{ug} / \mathrm{L}$	20	106	70	130	2	20
	1,1,1-trichloroethane	$20 \mathrm{ug} / \mathrm{L}$	20	98	70	130	6	20
	1,1-dichloropropene	$20 \mathrm{ug} / \mathrm{L}$	20	99	70	130	6	20
	t-amyl-methyl ether (TAME)	21 ug/L	20	103	70	130	0	20
	carbon tetrachloride	$18 \mathrm{ug} / \mathrm{L}$	20	90	70	130	5	20
	1,2-dichloroethane	$20 \mathrm{ug} / \mathrm{L}$	20	99	70	130	4	20
	benzene	$20 \mathrm{ug} / \mathrm{L}$	20	99	70	130	3	20
	trichloroethene	$19 \mathrm{ug} / \mathrm{L}$	20	96	70	130	5	20
	1,2-dichloropropane	20 ug/L	20	102	70	130	1	20
	bromodichloromethane	$19 \mathrm{ug} / \mathrm{L}$	20	95	70	130	0	20
	1,4-dioxane	< $50 \mathrm{ug} / \mathrm{L}$	40	106			7	20
	dibromomethane	$20 \mathrm{ug} / \mathrm{L}$	20	99	70	130	1	20
	4-methyl-2-pentanone (MIBK)	$19 \mathrm{ug} / \mathrm{L}$	20	94	70	130	2	20
	cis-1,3-dichloropropene	$17 \mathrm{ug} / \mathrm{L}$	20	87	70	130	5	20
	toluene	$20 \mathrm{ug} / \mathrm{L}$	20	98	70	130	3	20
	trans-1,3-dichloropropene	16 ug/	20	80	70	130	7	20
	2-hexanone	20 ug/L	20	98	70	130	3	20
	1,1,2-trichloroethane	$20 \mathrm{ug} / \mathrm{L}$	20	99	70	130	2	20
	1,3-dichloropropane	$21 \mathrm{ug} / \mathrm{h}$	20	103	70	130	1	20
	tetrachloroethene	21 ug/L	20	105	70	130	2	20
	dibromochloromethane	$18 \mathrm{ug} / \mathrm{L}$	20	91	70	130	4	20
	1,2-dibromoethane (EDB)	$19 \mathrm{ug} / \mathrm{L}$	20	95	70	130	1	20
	chlorobenzene	21 ug/L	20	105	70	130	3	20
	1,1,1,2-tetrachloroethane	$19 \mathrm{ug} / \mathrm{L}$	20	95	70	130	3	20
	ethylbenzene	21 ug/L	20	104	70	130	2	20
	m\&p-xylenes	$41 \mathrm{ug} / \mathrm{L}$	40	102	70	130	1	20
	0-xylene	21 ug/L	20	103	70	130	1	20
	styrene	$20 \mathrm{ug} / \mathrm{L}$	20	102	70	130	1	20
	bromoform	$17 \mathrm{ug} / \mathrm{L}$	20	87	70	130	1	20
	isopropylbenzene	$20 \mathrm{ug} / \mathrm{L}$	20	99	70	130	2	20
	1,1,2,2-tetrachloroethane	22 ug/L	20	109	70	130	2	20

Method QCID	Parameter Associated Sample	Result Units	Amt Added	\%R	Limit		RPD	RPD Limit
SW5035A8260B LCSD1930	1,2,3-trichloropropane	$22 \mathrm{ug} / \mathrm{L}$	20	112	70	130	1	20
	n-propylbenzene	$22 \mathrm{ug} / \mathrm{L}$	20	109	70	130	9	20
	bromobenzene	$22 \mathrm{ug} / \mathrm{L}$	20	109	70	130	5	20
	1,3,5-trimethylbenzene	21 ug/	20	105	70	130	13	20
	2-chlorotoluene	$21 \mathrm{ug} / \mathrm{L}$	20	103	70	130	8	20
	4-chlorotoluene	$22 \mathrm{ug} / \mathrm{L}$	20	109	70	130	11	20
	tert-butylbenzene	22 ug/	20	109	70	130	4	20
	1,2,4-trimethylbenzene	$21 \mathrm{ug} / \mathrm{L}$	20	106	70	130	10	20
	sec-butylbenzene	$20 \mathrm{ug} / \mathrm{L}$	20	102	70	130	9	20
	1,3-dichlorobenzene	$21 \mathrm{ug} / \mathrm{L}$	20	105	70	130	9	20
	4-isopropyltoluene	22 ugil	20	109	70	130	8	20
	1,4-dichlorobenzene	$20 \mathrm{ug} / \mathrm{L}$	20	102	70	130	7	20
	1,2-dichlorobenzene	$22 \mathrm{ug} / \mathrm{L}$	20	109	70	130	8	20
	n-butylbenzene	21 ug/L	20	105	70	130	12	20
	1,2-dibromo-3-chloropropane	$22 \mathrm{ug} / \mathrm{L}$	20	110	70	130	4	20
	1,2,4-trichlorobenzene	19 ug/	20	93	70	130	13	20
	1,3,5-richlorobenzene	$19 \mathrm{ug} / \mathrm{L}$	20	95	70	130	16	20
	hexachlorobutadiene	$20 \mathrm{ug} / \mathrm{L}$	20	99	70	130	18	20
	naphthalene	$19 \mathrm{ug} / \mathrm{L}$	20	95	70	130	5	20
	1,2,3-trichlorobenzene	$20 \mathrm{ug} / \mathrm{L}$	20	100	70	130	8	20
	dibromofluoromethane SUR	101 \%			78	114		
	toluene-D8 SUR	100%			88	110		
	4-bromofluorobenzene SUR	103 \%			86	115		

Method QCID	Parameter A	Associated Sample	Result Units Amt Added	\%R		Limit	RPD	RPD Limit
SW5035A8260B MB1930	1,2,3-trichloropropane	MB326	< $0.1 \mathrm{ug} / \mathrm{g}$					
	n -propylbenzene	MB326	< $0.1 \mathrm{ug} / \mathrm{g}$					
	bromobenzene	MB326	< 0.1 ug/g					
	1,3,5-trimethylbenzene	MB326	< $0.1 \mathrm{ug} / \mathrm{g}$					
	2-chlorotoluene	MB326	< $0.1 \mathrm{ug} / \mathrm{g}$					
	4-chlorotoluene	MB326	< $0.1 \mathrm{ug} / \mathrm{g}$					
	ter-butylbenzene	MB326	< 0.1 ug/g					
	1,2,4-trimethylbenzene	MB326	< $0.1 \mathrm{ug} / \mathrm{g}$					
	sec-butylbenzene	MB326	< $0.1 \mathrm{ug} / \mathrm{g}$					
	1,3-dichlorobenzene	MB326	< $0.1 \mathrm{ug} / \mathrm{g}$					
	4-isopropyltoluene	MB326	< $0.1 \mathrm{ug} / \mathrm{g}$					
	1,4-dichlorobenzene	MB326	< $0.1 \mathrm{ug} / \mathrm{g}$					
	1,2-dichlorobenzene	MB326	< $0.1 \mathrm{ug} / \mathrm{g}$					
	n-butylbenzene	MB326	< $0.1 \mathrm{ug} / \mathrm{g}$					
	1,2-dibromo-3-chloropropane	- MB326	< $0.1 \mathrm{ug} / \mathrm{g}$					
	1,2,4-trichlorobenzene	M 3326	< $0.1 \mathrm{ug} / \mathrm{g}$					
	1,3,5-trichlorobenzene	MB326	< $0.1 \mathrm{ug} / \mathrm{g}$					
	hexachlorobutadiene	MB326	< $0.1 \mathrm{ug} / \mathrm{g}$					
	naphthalene	MB326	< $0.2 \mathrm{ug} / \mathrm{g}$					
	1,2,3-trichlorobenzene	MB326	< $0.1 \mathrm{ug} / \mathrm{g}$					
	dibromofluoromethane SUR	MB326	102 \%		78	114		
	toluene-D8 SUR	MB326	102 \%		88	110		
	4-bromofluorobenzene SUR	MB326	93%		86	115		
	a,a,a-trifluorotoluene SUR	MB326	101 \%		70	130		

Method QCID	Parameter A	Associated Sample	Result Units	Amt Added	\%R	Limit		RPD	RPD Limit
SW5035A8260B MLCS1930	dichlorodifluoromethane	MLCS326	< $0.1 \mathrm{ug} / \mathrm{g}$						
	chloromethane	MLCS326	< $0.1 \mathrm{ug} / \mathrm{g}$						
	vinyl chloride	MLCS326	< 0.1 ug/g						
	bromomethane	MLCS326	< $0.2 \mathrm{ug} / \mathrm{g}$						
	chloroethane	MLCS326	< $0.1 \mathrm{ug} / \mathrm{g}$						
	trichlorofluoromethane	MLCS326	< 0.1 ug/g						
	diethyl ether	MLCS326	< $0.5 \mathrm{ug} / \mathrm{g}$						
	acetone	MLCS326	< $2.5 \mathrm{ug} / \mathrm{g}$						
	1,1-dichloroethene	MLCS326	$0.9 \mathrm{ug} / \mathrm{g}$	1	93	70	130		
	methylene chloride	MLCS326	< $0.2 \mathrm{ug} / \mathrm{g}$						
	carbon disulfide	MLCS326	< $0.1 \mathrm{ug} / \mathrm{g}$						
	methyl t-butyl ether (MTBE)	MLCS326	< 0.1 ug/g						
	trans-1,2-dichloroethene	MLCS326	< $0.1 \mathrm{ug} / \mathrm{g}$						
	isopropyl ether (DIPE)	MLCS326	< $0.1 \mathrm{ug} / \mathrm{g}$						
	ethyl t-butyl ether (ETBE)	MLCS326	< 0.1 ug/g						
	1,1-dichloroethane	MLCS326	< $0.1 \mathrm{ug} / \mathrm{g}$						
	t-butanol (TBA)	MLCS326	< $2.5 \mathrm{ug} / \mathrm{g}$						
	2-butanone (MEK)	MLCS326	< $0.5 \mathrm{ug} / \mathrm{g}$						
	2,2-dichloropropane	MLCS326	< 0.1 uglg						
	cis-1,2-dichloroethene	MLCS326	< 0.1 ug/g						
	chloroform	MLCS326	< 0.1 ug/g						
	bromochloromethane	MLCS326	< $0.1 \mathrm{ug} / \mathrm{g}$						
	tetrahydrofuran (THF)	MLCS326	< $0.5 \mathrm{ug} / \mathrm{g}$						
	1,1,1-trichloroethane	MLCS326	< 0.1 ug/g						
	1,1-dichloropropene	MLCS326	< 0.1 ug/g						
	t-amyl-methyl ether (TAME)	MLCS326	< 0.1 ug/g						
	carbon tetrachloride	MLCS326	< $0.1 \mathrm{ug} / \mathrm{g}$						
	1,2-dichloreethane	MLCS326	$<0.1 \mathrm{ug} / \mathrm{g}$						
	benzene	MLCS326	$1.0 \mathrm{ug} / \mathrm{g}$	1	100	70	130		
	trichloroethene	MLCS326	$0.9 \mathrm{ug} / \mathrm{g}$	1	90	70	130		
	1,2-dichloropropane	MLCS326	< 0.1 ug/g						
	bromodichloromethane	MLCS326	< 0.1 ug/g						
	1,4-dioxane	MLCS326	< $2.5 \mathrm{ug} / \mathrm{g}$						
	dibromomethane	MLCS326	< 0.1 ug/g						
	4-methyl-2-pentanone (MIBK)) MLCS326	< $0.5 \mathrm{ug} / \mathrm{g}$						
	cis-1,3-dichloropropene	MLCS326	< $0.1 \mathrm{ug} / \mathrm{g}$						
	toluene	MLCS326	$1.0 \mathrm{ug} / \mathrm{g}$	1	99	70	130		
	trans-1,3-dichloropropene	MLCS326	< $0.1 \mathrm{ug} / \mathrm{g}$						
	2-hexanone	MLCS326	< $0.5 \mathrm{ug} / \mathrm{g}$						
	1,1,2-trichloroethane	MLCS326	< $0.1 \mathrm{ug} / \mathrm{g}$						
	1,3-dichloropropane	MLCS326	< $0.1 \mathrm{ug} / \mathrm{g}$						
	tetrachloroethene	MLCS326	< $0.1 \mathrm{ug} / \mathrm{g}$						
	dibromochloromethane	MLCS326	< $0.1 \mathrm{ug} / \mathrm{g}$						
	1,2-dibromoethane (EDB)	MLCS326	< 0.1 ug/g						
	chlorobenzene	MLCS326	$1.0 \mathrm{ug} / \mathrm{g}$	1	102	70	130		
	1,1,1,2-tetrachloroethane	MLCS326	< $0.1 \mathrm{ug} / \mathrm{g}$						
	ethylbenzene	MLCS326	< 0.1 ug/g						
	m\&p-xylenes	MLCS326	0.1 ug/g			70	130		
	0 -xylene	MLCS326	< 0.1 ug/g						
	styrene	MLCS326	< $0.1 \mathrm{ug} / \mathrm{g}$						
	bromoform	MLCS326	< 0.1 ug/g						
	isopropylbenzene	MLCS326	< 0.1 ug/g						
	1,1,2,2-tetrachloroethane	MLCS326	< $0.1 \mathrm{ug} / \mathrm{g}$						

Method QC ID	Parameter	Associated Sample	Result Units Amt Added \%R	Limit	RPD	RPD Limit
SW5035A8260B MLCS1930	1,2,3-trichloropropane	MLCS326	< $0.1 \mathrm{ug} / \mathrm{g}$			
	n -propylbenzene	MLCS326	< $0.1 \mathrm{ug} / \mathrm{g}$			
	bromobenzene	MLCS326	< $0.1 \mathrm{ug} / \mathrm{g}$			
	1,3,5-trimethylbenzene	MLCS326	< $0.1 \mathrm{ug} / \mathrm{g}$			
	2-chlorotoluene	MLCS326	< $0.1 \mathrm{ug} / \mathrm{g}$			
	4-chlorotoluene	MLCS326	< $0.1 \mathrm{ug} / \mathrm{g}$			
	tert-butylbenzene	MLCS326	< $0.1 \mathrm{ug} / \mathrm{g}$			
	1,2,4-trimethylbenzene	MLCS326	< $0.1 \mathrm{ug} / \mathrm{g}$			
	sec-butylbenzene	MLCS326	< $0.1 \mathrm{ug} / \mathrm{g}$			
	1,3-dichlorobenzene	MLCS326	< $0.1 \mathrm{ug} / \mathrm{g}$			
	4-isopropyltoluene	MLCS326	< $0.1 \mathrm{ug} / \mathrm{g}$			
	1,4-dichlorobenzene	MLCS326	< 0.1 ug/g			
	1,2-dichlorobenzene	MLCS326	< 0.1 ug/g			
	n-butylbenzene	MLCS326	< $0.1 \mathrm{ug} / \mathrm{g}$			
	1,2-dibromo-3-chloropropane	e MLCS326	< $0.1 \mathrm{ug} / \mathrm{g}$			
	1,2,4-trichlorobenzene	MLCS326	< $0.1 \mathrm{ug} / \mathrm{g}$			
	1,3,5-trichlorobenzene	MLCS326	< $0.1 \mathrm{ug} / \mathrm{g}$			
	hexachlorobutadiene	MLCS326	< 0.1 uglg			
	naphthalene	MLCS326	< $0.2 \mathrm{ug} / \mathrm{g}$			
	1,2,3-trichlorobenzene	MLCS326	< $0.1 \mathrm{ug} / \mathrm{g}$			
	dibromofluoromethane SUR	MLCS326	101 \%	$78 \quad 114$		
	toluene-D8 SUR	MLCS326	100%	88110		
	4-bromofluorobenzene SUR	MLCS326	93%	86115		
	$\mathrm{a}, \mathrm{a}, \mathrm{a}$-trifluorotoluene SUR	MLCS326	93%	$70 \quad 130$		

Method QCID	Parameter A	Associated Sample	Result Units	Amt Added	\%R		mit	RPD	RPD Limit
SW5035A8260B MLCSD1930	dichlorodifluoromethane	MLCSD326	< 0.1 ug/g						
	chloromethane	MLCSD326	< $0.1 \mathrm{ug} / \mathrm{g}$						
	vinyl chloride	MLCSD326	< $0.1 \mathrm{ug} / \mathrm{g}$						
	bromomethane	MLCSD326	< $0.2 \mathrm{ug} / \mathrm{g}$						
	chloroethane	MLCSD326	< $0.1 \mathrm{ug} / \mathrm{g}$						
	trichlorofluoromethane	MLCSD326	< $0.1 \mathrm{ug} / \mathrm{g}$						
	diethyl ether	MLCSD326	< $0.5 \mathrm{ug} / \mathrm{g}$						
	acetone	MLCSD326	< $2.5 \mathrm{ug} / \mathrm{g}$						
	1,1-dichloroethene	MLCSD326	$0.9 \mathrm{ug} / \mathrm{g}$	1	93	70	130	0	30
	methylene chloride	MLCSD326	< $0.2 \mathrm{ug} / \mathrm{g}$						
	carbon disufifide	MLCSD326	< $0.1 \mathrm{ug} / \mathrm{g}$						
	methyl t-butyl ether (MTBE)	MLCSD326	< $0.1 \mathrm{ug} / \mathrm{g}$						
	trans-1,2-dichloroethene	MLCSD326	< 0.1 ughg						
	isopropyl ether (DIPE)	MLCSD326	< $0.1 \mathrm{ug} / \mathrm{g}$						
	ethyl t-butyl ether (ETBE)	MLCSD326	< $0.1 \mathrm{ug} / \mathrm{g}$						
	1,1-dichloroethane	MLCSD326	< $0.1 \mathrm{ug} / \mathrm{g}$						
	t-butanol (TBA)	MLCSD326	< $2.5 \mathrm{ug} / \mathrm{g}$						
	2-butanone (MEK)	MLCSD326	< $0.5 \mathrm{ug} / \mathrm{g}$						
	2,2-dichloropropane	MLCSD326	< $0.1 \mathrm{ug} / \mathrm{g}$						
	cis-1,2-dichloroethene	MLCSD326	< 0.1 ug/g						
	chloroform	MLCSD326	< $0.1 \mathrm{ug} / \mathrm{g}$						
	bromochloromethane	MLCSD326	< 0.1 ug/g						
	tetrahydrofuran (THF)	MLCSD326	< $0.5 \mathrm{ug} / \mathrm{g}$						
	1,1,1-trichloroethane	MLCSD326	< $0.1 \mathrm{ug} / \mathrm{g}$						
	1,1-dichloropropene	MLCSD326	< 0.1 ug/g						
	t-amyl-methyl ether (TAME)	MLCSD326	< 0.1 ug/g						
	carbon tetrachloride	MLCSD326	< $0.1 \mathrm{ug} / \mathrm{g}$						
	1,2-dichloroethane	MLCSD326	< $0.1 \mathrm{ug} / \mathrm{g}$						
	benzene	MLCSD326	$1.0 \mathrm{ug} / \mathrm{g}$	1	100	70	130	0	30
	trichloroethene	MLCSD326	$0.9 \mathrm{ug} / \mathrm{g}$	1	90	70	130	0	30
	1,2-dichloropropane	MLCSD326	< 0.1 uglg						
	bromodichloromethane	MLCSD326	< $0.1 \mathrm{ug} / \mathrm{g}$						
	1,4-dioxane	MLCSD326	< $2.5 \mathrm{ug} / \mathrm{g}$						
	dibromomethane	MLCSD326	< $0.1 \mathrm{ug} / \mathrm{g}$						
	4-methyl-2-pentanone (MIBK)	K) MLCSD326	< $0.5 \mathrm{ug} / \mathrm{g}$						
	cis-1,3-dichloropropene	MLCSD326	< 0.1 ug/g						
	toluene	MLCSD326	$1.0 \mathrm{ug} / \mathrm{g}$	1	97	70	130	1	30
	trans-1,3-dichloropropene	MLCSD326	< 0.1 ug/g						
	2-hexanone	MLCSD326	< $0.5 \mathrm{ug} / \mathrm{g}$						
	1,1,2-trichloroethane	MLCSD326	< 0.1 ug/g						
	1,3-dichloropropane	MLCSD326	< 0.1 ug/g						
	tetrachloroethene	MLCSD326	< 0.1 ug/g						
	dibromochloromethane	MLCSD326	< 0.1 ug/g						
	1,2-dibromoethane (EDB)	MLCSD326	< 0.1 ug/g						
	chlorobenzene	MLCSD326	$1.0 \mathrm{ug} / \mathrm{g}$	1	100	70	130	2	30
	1,1,1,2-tetrachloroethane	MLCSD326	< 0.1 ug/g						
	ethylbenzene	MLCSD326	< 0.1 ug/g						
	m\&p-xylenes	MLCSD326	0.1 ug/g			70	130		
	o-xylene	MLCSD326	< $0.1 \mathrm{ug} / \mathrm{g}$						
	styrene	MLCSD326	< 0.1 ug/g						
	bromoform	MLCSD326	< $0.1 \mathrm{ug} / \mathrm{g}$						
	isopropylbenzene	MLCSD326	< 0.1 ug/g						
	1,1,2,2-tetrachloroethane	MLCSD326	< 0.1 ug/g						

Method QC ID	Parameter	Associated Sample	Result Units	Amt Added \%R		Limit	RPD	RPD Limit
SW5035A8260B MLCSD1930	1,2,3-trichloropropane	MLCSD326	< $0.1 \mathrm{ug} / \mathrm{g}$					
	n-propylbenzene	MLCSD326	< $0.1 \mathrm{ug} / \mathrm{g}$					
	bromobenzene	MLCSD326	< $0.1 \mathrm{ug} / \mathrm{g}$					
	1,3,5-trimethylbenzene	MLCSD326	< $0.1 \mathrm{ug} / \mathrm{g}$					
	2-chlorotoluene	MLCSD326	< $0.1 \mathrm{ug} / \mathrm{g}$					
	4-chlorotoluene	MLCSD326	< $0.1 \mathrm{ug} / \mathrm{g}$					
	tert-butylbenzene	MLCSD326	< $0.1 \mathrm{ug} / \mathrm{g}$					
	1,2,4-trimethylbenzene	MLCSD326	< 0.1 ug/g					
	sec-butylbenzene	MLCSD326	< $0.1 \mathrm{ug} / \mathrm{g}$					
	1,3-dichlorobenzene	MLCSD326	< $0.1 \mathrm{ug} / \mathrm{g}$					
	4-isopropyltoluene	MLCSD326	< 0.1 ug/g					
	1,4-dichlorobenzene	MLCSD326	< $0.1 \mathrm{ug} / \mathrm{g}$					
	1,2-dichlorobenzene	MLCSD326	< 0.1 ug/g					
	n-butylbenzene	MLCSD326	< 0.1 ug/g					
	1,2-dibromo-3-chloropropane	e MLCSD326	< $0.1 \mathrm{ug} / \mathrm{g}$					
	1,2,4-rrichlorobenzene	MLCSD326	< $0.1 \mathrm{ug} / \mathrm{g}$					
	1,3,5-trichlorobenzene	MLCSD326	< $0.1 \mathrm{ug} / \mathrm{g}$					
	hexachlorobutadiene	MLCSD326	< 0.1 ug/g					
	naphthalene	MLCSD326	< $0.2 \mathrm{ug} / \mathrm{g}$					
	1,2,3-trichlorobenzene	MLCSD326	< $0.1 \mathrm{ug} / \mathrm{g}$					
	dibromofluoromethane SUR	MLCSD326	100%		78	114		
	toluene-D8 SUR	MLCSD326	99%		88	110		
	4-bromofluorobenzene SUR	MLCSD326	92 \%		86	115		
	a,a,a-trifluorotoluene SUR	MLCSD326	97 \%		70	130		

Method QCID	Parameter Associated Sample	Result Units	Amt Added	\%R	Limit		RPD	RPD Limit
SW3550B8015B BLK1932	Diesel Range Organics (DRO)	< $200 \mathrm{ug} / \mathrm{g}$						
	2-fluorobiphenyl SUR	81 \%			40	140		
	o-terphenyl SUR	90%			40	140		
LCS1932	Diesel Range Organics (DRO)	$2100 \mathrm{ug} / \mathrm{g}$	2500	83	40			
	2-fluorobiphenyI SUR	74 \%			40	140		
	o-terphenyI SUR	95 \%			40	140		
SW3550B8270C BLK1931	naphthalene	< $0.5 \mathrm{ug} / \mathrm{g}$						
	2-methylnaphtialene	< $0.5 \mathrm{ug} / \mathrm{g}$						
	acenaphthylene	< $0.5 \mathrm{ug} / \mathrm{g}$						
	acenaphthene	< $0.5 \mathrm{ug} / \mathrm{g}$						
	dibenzofuran	< $0.5 \mathrm{ug} / \mathrm{g}$						
	fluorene	< $0.5 \mathrm{ug} / \mathrm{g}$						
	phenanthrene	< $0.5 \mathrm{ug} / \mathrm{g}$						
	anthracene	< $0.5 \mathrm{ug} / \mathrm{g}$						
	fluoranthene	< $0.5 \mathrm{ug} / \mathrm{g}$						
	pyrene	< $0.5 \mathrm{ug} / \mathrm{g}$						
	benzo(a)anthracene	< $0.5 \mathrm{ug} / \mathrm{g}$						
	chrysene	< $0.5 \mathrm{ug} / \mathrm{g}$						
	benzo(b)fluoranthene	< $0.5 \mathrm{ug} / \mathrm{g}$						
	benzo(k)fluoranthene	< $0.5 \mathrm{ug} / \mathrm{g}$						
	benzo(a)pyrene	< $0.2 \mathrm{ug} / \mathrm{g}$						
	indeno(1,2,3-cd)pyrene	< $0.5 \mathrm{ug} / \mathrm{g}$						
	dibenzo(a, h) anthracene	< $0.5 \mathrm{ug} / \mathrm{g}$						
	benzo(g,h,i)perylene	< $0.5 \mathrm{ug} / \mathrm{g}$						
	2-fluorobiphenyl SUR	73%			43	116		
	- -terphenyI SUR	71 \%			33	141		
LCS1931	naphthalene	$4.7 \mathrm{ug} / \mathrm{g}$	4	118	40	140		
	2-methylnaphthalene	4.4 ug/g	4	111	40	140		
	acenaphthylene	4.7 ug/g	4	118	40	140		
	acenaphthene	$4.8 \mathrm{ug} / \mathrm{g}$	4	121	40	140		
	dibenzofuran	< $0.5 \mathrm{ug} / \mathrm{g}$						
	fluorene	$4.5 \mathrm{ug} / \mathrm{g}$	4	113	40	140		
	phenanthrene	4.8 ug/g	4	119	40	140		
	anthracene	4.7 ug/g	4	117	40	140		
	fluoranthene	$4.8 \mathrm{ug} / \mathrm{g}$	4	120	40	140		
	pyrene	4.4 ug/g	4	110	40	140		
	benzo(a)anthracene	4.6 ug/g	4	114	40	140		
	chrysene	4.5 ug/g	4	113	40	140		
	benzo(b)fluoranthene	4.5 ug/g	4	113	40	140		
	benzo(k)fluoranthene	$3.7 \mathrm{ug} / \mathrm{g}$	4	94	40	140		
	benzo(a)pyrene	$3.9 \mathrm{ug} / \mathrm{g}$	4	99	40	140		
	indeno(1,2,3-cd)pyrene	$3.7 \mathrm{ug} / \mathrm{g}$	4	93	40	140		
	dibenzo(a,h)anthracene	3.6 ug/g	4	91	40	140		
	benzo(g, h, i)perylene	4.1 ug/g	4	102	40	140		
	2-fluorobiphenyI SUR	81 \%			43	116		
	o-terphenyl SUR	72 \%			33	141		

Lab Number 15945
Batch QC Results

Prep Blank

Analyte	Sample ID \#	Result $(\mathrm{ug} / \mathrm{g})$	Reporting Limit $(\mathbf{u g} / \mathbf{g})$
Silver	PBs010809	<0.35	0.35
Arsenic	PBs010809	<0.5	0.5
Barium	PBs010809	<3	3
Cadmium	PBs010809	<0.3	0.3
Chromium	PBs010809	<3	3
Lead	PBs010809	<0.5	0.5
Selenium	PBs010809	<3	3
Mercury	PBs010909	<0.03	0.03

Laboratory Control Sample

Analyte	Sample ID \# Silver	(ug/g)
Arsenic	PBs010809	<0.35
Barium	PBs010809	<0.5
Cadmium	PBs010809	<3
Chromium	PBs010809	<0.3
Lead	PBs010809	<3
Selenium	PBs010809	<0.5
Mercury	PBs010909	<3
Laboratory Control	Sample	
		Result
Analyte	Sample ID \#	(ug/g)
Silver	LCSss010809	29
Arsenic	LCSss010809	380
Barium	LCSss010809	31
Cadmium	LCSss010809	15
Chromium	LCSss010809	19
Lead	LCSss010809	4800
Selenium	LCSss010809	5.8
Mercury	LCSs010909	0.0092

Laboratory Control Sample - Duplicate

Analyte	Sample ID \#	Result (ug/g)
Silver	LCSDss010809	31
Arsenic	LCSDss010809	380
Barium	LCSDss010809	32
Cadmium	LCSDss010809	15
Chromium	LCSDss010809	20
Lead	LCSDss010809	5000
Selenium	LCSDss010809	5.9
Mercury	LCSDs010909	0.0099

METALS QC REPORT Solid

[^4]RDResource Laboratories, LLC
124 Heritage Avenue - Portsmouth, NH 03801
Phone: 603-436-2001 • Fax: 603-430-2100

Company Name:

CHAIN-OF-CUSTODY RECORD AND ANALYSIS REQUEST

Dup

ANALYSIS REQUEST

$\square \mathrm{pH} \quad \square \mathrm{BOD} \square$ Conductivity \square Turbidity
\&RCRA Metals \square Priority Pollutant Metals \square TAL. Metals
\square Total Metals-list

\square T-Phosphorus \square Phenol
\square Cyanide \square Sulfide \square Nitrate + Nitrite \square Ortho P
\square Nitrate \square Nitrite \square Chloride \square Sulfate \square Bromide \square Fluoride \square Corrosivily \square Reactive $C N \square$ Reactive S - \square lgnitibinity/f

TCLP Meals \square TCLP VOC \square TCLP SVOC \square CL P Pesticide
Subcontract: \square OC \square Grain Size \square TCLP Herbicides

TAT REQUESTED
$\begin{array}{ll}\text { Priority }(24 \mathrm{hr})^{* *} & \square \\ \text { Expedited }(48 \mathrm{hr})^{* *} & \square\end{array}$
$\begin{array}{ll}\text { Expedited }(48 \mathrm{hr})^{* *} & \square \\ \text { Standard } & \square\end{array}$
(10 Business Days)
**Date Needed

> See www.reslabs.com for sample acceptance policy

$1+12$ Trip Blank

APPENDIX E

GROUNDWATER ANALYTICAL RESULTS

Resource Laboratories, LLC
124 Heritage Avenue \#10 Portsmouth, NH 03801
Donald Kirkland
PO Number: None
GZA GeoEnvironmental, Inc.
Airpark Business Center
LabID: 16048
380 Harvey Rd
Manchester, NH 03103-3347

Project: 04.0024843.01 Peterboro NHANG Armory
Attached please find results for the analysis of the samples received on the date referenced above.

Unless otherwise noted in the attached report, the analyses performed met the requirements of Resource Laboratories, LLC Quality Assurance Plan. The Standard Operating Procedures (SOP) are based upon USEPA SW-846, USEPA Methods for Chemical Analysis of Water and Wastewater, Standard Methods for the Examination of Water and Wastewater and other recognized methodologies. The results contained in this report pertain only to the samples as indicated on the chain of custody.

Resource Laboratories, LLC maintains certification with the agencies listed below.
We appreciate the opportunity to provide laboratory services. If you have any questions regarding the enclosed report, please contact the laboratory and we will be glad to assist you.

Sincerely,
Resource Laboratories, LLC

Date
Principal, General Manager
Total number of pages

Resource Laboratories, LLC Certifications
New Hampshire 1732
Massachusetts M-NH902
Maine NH903

Project ID: 04.0024843 .01 Peterboro NHANG Armory
Lab ID: 16048
Lab Number: 16048-001
Sample ID: MW-1 Matrix: Water
Sampled: 1/29/09 13:40
Parameter
dichlorodifluoromethane
chloromethane
vinyl chloride
bromomethane
chloroethane
trichlorofluoromethane
diethyl ether
acetone
1,1-dichloroethene
methylene chloride
carbon disulfide
methyl t-butyl ether (MTBE)
trans-1,2-dichloroethene isopropyl ether (DIPE)
ethyl t-butyl ether (ETBE)
1,1-dichloroethane
t-butanol (TBA)
2-butanone (MEK)
2,2-dichloropropane
cis-1,2-dichloroethene
chloroform
bromochloromethane
tetrahydrofuran (THF)
1,1,1-trichloroethane
1,1-dichloropropene
t-amyl-methyl ether (TAME)
carbon tetrachloride
1,2-dichloroethane
benzene
trichloroethene
1,2-dichloropropane
bromodichloromethane
1,4-dioxane
dibromomethane
4-methyl-2-pentanone (MIBK)
cis-1,3-dichloropropene
toluene
trans-1,3-dichloropropene
2-hexanone
1,1,2-trichloroethane
1,3-dichloropropane
tetrachloroethene
dibromochloromethane
1,2-dibromoethane (EDB)

		Instr Dil'n			Prep	Analysis		
Result	Limit	Units	Factor	Analyst	Date	Batch Date	Time	Reference
<2	2	ug/L	1	LMM		0900236 2/5/09	7:02	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	7:02	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	7:02	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	7:02	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	7:02	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	7:02	SW5030B8260B
< 5	5	ug/L	1	LMM		0900236 2/5/09	7:02	SW5030B8260B
<50	50	ug/L	1	LMM		0900236 2/5/09	7:02	SW5030B8260B
<1	1	ug/L	1	LMM		0900236 2/5/09	7:02	SW5030B8260B
< 5	5	ug/L	1	LMM		$09002362 / 5 / 09$	7:02	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	7:02	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	7:02	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	7:02	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	7:02	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	7:02	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	7:02	SW503088260B
<30	30	ug/L	1	LMM		0900236 2/5/09	7:02	SW5030B8260B
<10	10	ug/L	1	LMM		0900236 2/5/09	7:02	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	7:02	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	7:02	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	7:02	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	7:02	SW5030B8260B
<10	10	ug/L	1	LMM		0900236 2/5/09	7:02	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	7:02	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	7:02	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	7:02	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	7:02	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	7:02	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	7:02	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	7:02	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	7:02	SW5030B8260B
< 0.6	0.6	ug/L	1	LMM		$0900236215 / 09$	7:02	SW5030B8260B
< 50	50	ug/L	1	LMM		$09002362 / 5 / 09$	7:02	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	7:02	SW5030B8260B
< 10	10	ug/L	1	LMM		0900236 2/5/09	7:02	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	7:02	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	7:02	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	7:02	SW5030B8260B
<10	10	ug/L	1	LMM		0900236 2/5/09	7:02	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	7:02	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	7:02	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	7:02	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	7:02	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	7:02	SW5030B8260B

$\mathbf{R L}_{\text {Resource Laboratorese, } \mathrm{LLC}}$

Project ID: 04.0024843 .01 Peterboro NHANG Armory
Lab ID: 16048
Lab Number: 16048-001
Sample ID: MW-1
Matrix: Water
Sampled: 1/29/09 13:40
Parameter
chlorobenzene
1,1,1,2-tetrachloroethane
ethylbenzene
m\&p-xylenes
o-xylene
styrene
bromoform
isopropylbenzene
1,1,2,2-tetrachloroethane
1,2,3-trichloropropane
n-propylbenzene
bromobenzene
1,3,5-trimethylbenzene
2-chlorotoluene
4-chlorotoluene
tert-butylbenzene
1,2,4-trimethylbenzene
sec-butylbenzene
1,3-dichlorobenzene
4 -isopropyltoluene
1,4-dichlorobenzene
1,2-dichlorobenzene
n-butylbenzene
1,2-dibromo-3-chloropropane (DBCP)
1,2,4--richlorobenzene
1,3,5-trichlorobenzene
hexachlorobutadiene
naphthalene
1,2,3-trichlorobenzene
Surrogate Recovery
dibromofluoromethane SUR
toluene-D8 SUR
4-bromofluorobenzene SUR

	Quant	Instr Dil'n			Prep	Analysis		
Result	Limit	Units	Factor	Analyst	Date	Batch Date	Time	Reference
<2	2	ug/L	1	LMM		0900236 2/5/09	7:02	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	7:02	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	7:02	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	7:02	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	7:02	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	7:02	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	7:02	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	7:02	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	7:02	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	7:02	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	7:02	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	7:02	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	7:02	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	7:02	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	7:02	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	7:02	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	7:02	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	7:02	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	7:02	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	7:02	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	7:02	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	7:02	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	7:02	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	7:02	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	7:02	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	7:02	SW503088260B
<0.5	0.5	ug/L	1	LMM		$09002362 / 5 / 09$	7:02	SW5030B8260B
<5	5	ug/L	1	LMM		0900236 2/5/09	7:02	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	7:02	SW5030B8260B
	Limits							
101	78-114	\%	1	LMM		0900236 2/5/09	7:02	SW5030B8260B
95	88-110	\%	1	LMM		$09002362 / 5 / 09$	7:02	SW5030B8260B
90	86-115	\%	1	LMM		$09002362 / 5 / 09$	7:02	SW5030B8260

Lab ID: 16048
Lab Number: 16048-002
Sample ID: MW-2
Matrix: Water
Sampled: 1/29/09 11:40
Parameter
dichlorodifluoromethane
chloromethane
vinyl chloride
bromomethane
chloroethane
trichlorofluoromethane
diethyl ether
acetone
1,1-dichloroethene
methylene chloride
carbon disulfide
methyl t-butyl ether (MTBE)
trans-1,2-dichloroethene
isopropyl ether (DIPE)
ethyl t-butyl ether (ETBE)
1,1-dichloroethane
t-butanol (TBA)
2-butanone (MEK)
2,2-dichloropropane
cis-1,2-dichloroethene
chloroform
bromochloromethane
tetrahydrofuran (THF)
1,1,1-trichloroethane
1,1-dichloropropene
t-amyl-methyl ether (TAME)
carbon tetrachloride
1,2-dichloroethane
benzene
trichloroethene
1,2-dichloropropane
bromodichloromethane
1,4-dioxane
dibromomethane
4-methyl-2-pentanone (MIBK)
cis-1,3-dichloropropene
toluene
trans-1,3-dichloropropene
2-hexanone
1,1,2-trichloroethane
1,3-dichloropropane
tetrachloroethene
dibromochloromethane
1,2-dibromoethane (EDB)

		Instr Dil'n			Prep	Analysis	
Result	Limit	Units	Factor	Analyst	Date	Batch Date	Time
<2	2	ug/L	1	LMM		0900236 2/5/09	5:02
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	5:02
<2	2	ug/L	1	LMM		$09002362 / 5 / 09^{\circ}$	5:02
<2	2	ug $/ \mathrm{L}$	1	LMM		$09002362 / 5 / 09$	5:02
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	5:02
<2	2	$u g / L$	1	LMM		$09002362 / 5 / 09$	5:02
<5	5	ug/L	1	LMM		$09002362 / 5 / 09$	5:02
<50	50	ug/L	1	LMM		0900236 2/5/09	5:02
<1	1	ug/L	1	LMM		0900236 2/5/09	5:02
<5	5	ug/L	1	LMM		$09002362 / 5 / 09$	5:02
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	5:02
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	5:02
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	5:02
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	5:02
<2	2	ug/L	1	LMM		0900236 2/5/09	5:02
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	5:02
<30	30	ug/L	1	LMM		$09002362 / 5 / 09$	5:02
<10	10	ug/L	1	LMM		$09002362 / 5 / 09$	5:02
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	5:02
<2	2	ug/L	1	LMM		0900236 2/5/09	5:02
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	5:02
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	5:02
<10	10	ug/L	1	LMM		$09002362 / 5 / 09$	5:02
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	5:02
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	5:02
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	5:02
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	5:02
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	5:02
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	5:02
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	5:02
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	5:02
<0.6	0.6	ug/L	1	LMM		0900236 2/5/09	5:02
<50	50	ug/L	1	LMM		$09002362 / 5 / 09$	5:02
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	5:02
< 10	10	$u g / L$	1	LMM		$09002362 / 5 / 09$	5:02
<2	2	$u g / L$	1	LMM		$09002362 / 5 / 09$	5:02
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	5:02
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	5:02
<10	10	ug/L	1	LMM		$09002362 / 5 / 09$	5:02
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	5:02
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	5:02
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	5:02
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	5:02
<2	2	ug/L	1	LMM		0900236 2/5/09	5:02

Reference SW5030B8260B SW5030B8260B

Project ID: 04.0024843.01 Peterboro NHANG Armory
Lab ID: 16048
Lab Number: 16048-002
Sample ID: MW-2
Matrix: Water
Sampled: 1/29/09 11:40
Parameter
chlorobenzene
1,1,1,2-tetrachloroethane
ethylbenzene
m\&p-xylenes
o-xylene
styrene
bromoform
isopropylbenzene
1,1,2,2-tetrachloroethane
1,2,3-trichloropropane
n-propylbenzene
bromobenzene
1,3,5-trimethylbenzene
2-chlorotoluene
4-chlorotoluene
tert-butylbenzene
1,2,4-trimethylbenzene
sec-butylbenzene
1,3-dichlorobenzene
4-isopropyltoluene
1,4-dichlorobenzene
1,2-dichlorobenzene
n-butylbenzene
1,2-dibromo-3-chloropropane (DBCP)
1,2,4-trichlorobenzene
1,3,5-trichlorobenzene
hexachlorobutadiene
naphthalene
1,2,3-trichlorobenzene
Surrogate Recovery
dibromofluoromethane SUR
toluene-D8 SUR
4-bromofluorobenzene SUR

	Quant	Instr Dil'n			Prep	Analysis		
Result	Limit	Units	Factor	Analyst	Date	Batch Date	Time	Reference
<2	2	ug/L	1	LMM		0900236 2/5/09	5:02	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	5:02	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	5:02	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	5:02	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	5:02	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	5:02	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	5:02	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	5:02	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	5:02	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	5:02	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	5:02	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	5:02	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	5:02	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	5:02	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	5:02	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	5:02	SW5030B8260B
<2	2	ug/L	1	LMM		$0900236215 / 09$	5:02	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 215/09	5:02	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	5:02	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	5:02	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	5:02	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	5:02	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	5:02	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	5:02	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	5:02	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	5:02	SW5030B8260B
<0.5	0.5	ug/L	1	LMM		$09002362 / 5 / 09$	5:02	SW5030B8260B
< 5	5	ug/L	1	LMM		0900236 2/5/09	5:02	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	5:02	SW5030B8260B
	Limits							
97	78-114	\%	1	LMM		0900236 2/5/09	5:02	SW5030B8260B
96	88-110	\%	1	LMM		$09002362 / 5 / 09$	5:02	SW5030B8260B
93	86-115	\%	1	LMM		0900236 2/5/09	5:02	SW5030B8260B

Lab ID: 16048
Lab Number: 16048-003
Sample ID: MW-3 dup
Matrix: Water
Sampled: 1/29/09 12:25
Parameter
dichlorodifluoromethane
chloromethane
vinyl chloride
bromomethane
chloroethane
trichlorofluoromethane
diethyl ether acetone
1,1-dichloroethene
methylene chloride
carbon disulfide
methyl t-butyl ether (MTBE)
trans-1,2-dichloroethene
isopropyl ether (DIPE)
ethyl t-butyl ether (ETBE)
1,1-dichloroethane
t-butanol (TBA)
2-butanone (MEK)
2,2-dichloropropane
cis-1,2-dichloroethene
chloroform
bromochloromethane
tetrahydrofuran (THF)
1,1,1-trichloroethane
1,1-dichloropropene
t-amyl-methyl ether (TAME)
carbon tetrachloride
1,2-dichloroethane
benzene
trichloroethene
1,2-dichloropropane
bromodichloromethane
1,4-dioxane
dibromomethane
4-methyl-2-pentanone (MIBK)
cis-1,3-dichloropropene
toluene
trans-1,3-dichloropropene
2-hexanone
1,1,2-trichloroethane
1,3-dichloropropane
tetrachloroethene
dibromochloromethane
1,2-dibromoethane (EDB)

Result $\begin{gathered}\text { Quant } \\ \text { Limit }\end{gathered}$
$<2 \quad 2$

	Instr Dil'n	
Units	Factor	Prep
Analyst		

09002362/5/09 6:02
0900236 2/5/09 6:02
0900236 2/5/09 6:02

$09002362 / 5 / 09$	$6: 02$
$09002362 / 5 / 09$	$6: 02$

0900236 2/5/09 6:02
0900236 2/5/09 6:02
0900236 2/5/09 6:02
0900236 2/5/09 6:02
0900236 2/5/09 6:02
0900236 2/5/09 $6: 02$
0900236 2/5/09 6:02
0900236 2/5/09 6:02
0900236 2/5/09 $\quad 6: 02$
0900236 2/5/09 6:02

0900236 2/5/09 6:02
0900236 2/5/09 $6: 02$
0900236 2/5/09 6:02

0900236 2/5/09 6:02
0900236 2/5/09 6:02

$09002362 / 5 / 09$	$6: 02$
$09002362 / 5 / 09$	$6: 02$

0900236 2/5/09 6:02
0900236 2/5/09 6:02
0900236 2/5/09 6:02

0900236 2/5/09 6:02
0900236 2/5/09 6:02
0900236 2/5/09 6:02 SW5030B8260B

Reference
SW5030B8260B SW5030B8B8260B SW5030B8260B

Project ID: 04.0024843.01 Peterboro NHANG Armory
Lab ID: 16048
Lab Number: 16048-003
Sample ID: MW-3 dup
Matrix: Water
Sampled: 1/29/09 12:25
Parameter
chlorobenzene
1,1,1,2-tetrachloroethane
ethylbenzene
m\&p-xylenes
o-xylene
styrene
bromoform
isopropylbenzene
1,1,2,2-tetrachloroethane
1,2,3-trichloropropane
n-propylbenzene
bromobenzene
1,3,5-trimethylbenzene
2-chlorotoluene
4-chlorotoluene
tert-butylbenzene
1,2,4-trimethylbenzene
sec-butylbenzene
1,3-dichlorobenzene
4-isopropyltoluene
1,4-dichlorobenzene
1,2-dichlorobenzene
n-butylbenzene
1,2-dibromo-3-chloropropane (DBCP)
1,2,4-trichlorobenzene
1,3,5-trichlorobenzene
hexachlorobutadiene
naphthalene
1,2,3-trichlorobenzene
Surrogate Recovery
dibromofluoromethane SUR
toluene-D8 SUR
4-bromofluorobenzene SUR

Result	Quant	Instr Dil'n		
	Limit	Units	Factor	Analyst
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug $/ \mathrm{L}$	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<0.5	0.5	ug/L	1	LMM
<5	5	ug/L	1	LMM
<2	2	ug/L	1	LMM
	Limits			
99	78-114	\%	1	LMM
94	88-110	\%	1	LMM
88	86-115	\%	1	LMM

Analysis		
Batch	Date	Time
Reference		
$09002362 / 5 / 09$	$6: 02$	SW5030B8260B
$09002362 / 5 / 09$	$6: 02$	SW5030B8260B
$09002362 / 5 / 09$	$6: 02$	SW5030B8260B
$09002362 / 5 / 09$	$6: 02$	SW5030B8260B
$09002362 / 5 / 09$	$6: 02$	SW5030B8260B
$09002362 / 5 / 09$	$6: 02$	SW5030B8260B
$09002362 / 5 / 09$	$6: 02$	SW5030B8260B
$09002362 / 5 / 09$	$6: 02$	SW5030B8260B
$09002362 / 5 / 09$	$6: 02$	SW5030B8260B
$09002362 / 5 / 09$	$6: 02$	SW5030B8260B
$09002362 / 5 / 09$	$6: 02$	SW5030B8260B
$09002362 / 5 / 09$	$6: 02$	SW5030B8260B
$09002362 / 5 / 09$	$6: 02$	SW5030B8260B
$09002362 / 5 / 09$	$6: 02$	SW5030B8260B
$09002362 / 5 / 09$	$6: 02$	SW5030B8260B
$09002362 / 5 / 09$	$6: 02$	SW5030B8260B
$09002362 / 5 / 09$	$6: 02$	SW5030B8260B
$09002362 / 5 / 09$	$6: 02$	SW5030B8260B
$09002362 / 5 / 09$	$6: 02$	SW5030B8260B
$09002362 / 5 / 09$	$6: 02$	SW5030B8260B
$09002362 / 5 / 09$	$6: 02$	SW5030B8260B
$09002362 / 5 / 09$	$6: 02$	SW5030B8260B
$09002362 / 5 / 09$	$6: 02$	SW5030B8260B
$09002362 / 5 / 09$	$6: 02$	SW5030B8260B
$09002362 / 5 / 09$	$6: 02$	SW5030B8260B
$09002362 / 5 / 09$	$6: 02$	SW5030B8260B
$09002362 / 5 / 09$	$6: 02$	SW5030B8260B
$09002362 / 5 / 09$	$6: 02$	SW5030B8260B
$09002362 / 5 / 09$	$6: 02$	SW5030B8260B
$09002362 / 5 / 09$	$6: 02$	SW5030B8260B
$09002362 / 5 / 09$	$6: 02$	SW5030B8260B
$09002362 / 5 / 09$	$6: 02$	SW5030B8260B
0		

Lab Number: 16048-004
Sample ID: MW-3
Matrix: Water
Sampled: 1/29/09 12:30
Parameter
dichlorodifluoromethane
chloromethane
vinyl chloride
bromomethane
chloroethane
trichlorofluoromethane
diethyl ether
acetone
1,1-dichloroethene
methylene chloride
carbon disulfide
methyl t-butyl ether (MTBE)
trans-1,2-dichloroethene isopropyl ether (DIPE)
ethyl t-butyl ether (ETBE)
1,1-dichloroethane
t-butanol (TBA)
2-butanone (MEK)
2,2-dichloropropane
cis-1,2-dichloroethene
chloroform
bromochloromethane
tetrahydrofuran (THF)
1,1,1-trichloroethane
1,1-dichloropropene
t-amyl-methyl ether (TAME)
carbon tetrachloride
1,2-dichloroethane
benzene
trichloroethene
1,2-dichloropropane
bromodichloromethane
1,4-dioxane
dibromomethane
4-methyl-2-pentanone (MIBK)
cis-1,3-dichloropropene
toluene
trans-1,3-dichloropropene
2-hexanone
1,1,2-trichloroethane
1,3-dichloropropane
tetrachloroethene
dibromochloromethane
1,2-dibromoethane (EDB)

Result $\begin{gathered}\text { Quant } \\ \text { Limit }\end{gathered}$
$<2 \quad 2$

Instr Dil'n			Prep	Analysis		
Units	Factor	Analyst		Batch Date	Time	Reference
ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B

Lab ID: 16048

Lab Number: 16048-004

Sample ID: MW-3

Matrix: Water
Sampled: 1/29/09 12:30
Parameter
1,1,1,2-tetrachloroethane
ethylbenzene
m\&p-xylenes
o-xylene
styrene
bromoform
isopropylbenzene
1,1,2,2-tetrachloroethane
1,2,3-trichloropropane
n-propylbenzene
bromobenzene
1,3,5-trimethylbenzene
2-chlorotoluene
4-chlorotoluene
tert-butylbenzene
1,2,4-trimethylbenzene
sec-butylbenzene
1,3-dichlorobenzene
4-isopropyltoluene
1,4-dichlorobenzene
1,2-dichlorobenzene
n-butylbenzene
1,2-dibromo-3-chloropropane (DBCP)
1,2,4-trichlorobenzene
1,3,5-trichlorobenzene
hexachlorobutadiene
naphthalene
1,2,3-trichlorobenzene
Surrogate Recovery
dibromofluoromethane SUR
toluene-D8 SUR
4-bromofliuorobenzene SUR

Result	$\underset{\text { Limit }}{\text { Quant }}$	Instr Dil'n			PrepDate	Analysis		
		Units	Factor	Analyst		Batch Date	Time	Reference
<2	2	ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
<2	2	ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
<2	2	ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
<2	2	ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
<2	2	ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
<2	2	ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
<2	2	ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
<2	2	ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
<2	2	ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
<2	2	ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
<2	2	ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
<2	2	ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
<2	2	ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
<2	2	ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
<2	2	ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
<2	2	ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
<2	2	ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
<2	2	ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
<2	2	ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
<2	2	ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
<2	2	ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
<2	2	ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
<2	2	ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
<2	2	ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
<2	2	ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
<2	2	ug/	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
<0.5	0.5	ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
< 5	5	ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
<2	2	ug/L	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
Limits								
97	78-114	\%	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
96	88-110	\%	1	LMM		0900247 2/6/09	15:52	SW5030B8260B
91	86-115	\%	1	LMM		0900247 2/6/09	15:52	SW5030B8260B

Lab ID: 16048

Lab Number: 16048-005
Sample ID: MW-4 Matrix: Water

Sampled: 1/29/09 12:10
Parameter
dichlorodifluoromethane
chloromethane
vinyl chloride
bromomethane
chloroethane
trichlorofluoromethane
diethyl ether
acetone
1,1-dichloroethene
methylene chloride
carbon disulfide
methyl t-butyl ether (MTBE)
trans-1,2-dichloroethene
isopropyl ether (DIPE)
ethyl t-butyl ether (ETBE)
1,1-dichloroethane t-butanol (TBA)
2-butanone (MEK)
2,2-dichloropropane
cis-1,2-dichloroethene
chloroform
bromochloromethane
tetrahydrofuran (THF)
1,1,1-trichloroethane
1,1-dichloropropene
t-amyl-methyl ether (TAME)
carbon tetrachloride
1,2-dichloroethane
benzene
trichloroethene
1,2-dichloropropane
bromodichloromethane
1,4-dioxane
dibromomethane
4-methyl-2-pentanone (MIBK)
cis-1,3-dichloropropene
toluene
trans-1,3-dichloropropene
2-hexanone
1,1,2-trichloroethane
1,3-dichloropropane
tetrachloroethene
dibromochloromethane
1,2-dibromoethane (EDB)

Result	$\underset{\text { Quant }}{\text { Limit }}$	Instr Dil'n			Prep	Analysis		
		Units	Factor	Analyst	Date	Batch Date	Time	Reference
<2	2	ug/L	1	LMM		0900236 2/5/09	6:32	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	6:32	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	6:32	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	6:32	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	6:32	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	6:32	SW5030B8260B
< 5	5	ug/L	1	LMM		0900236 2/5/09	6:32	SW5030B8260B
< 50	50	ug/L	1	LMM		0900236 2/5/09	6:32	SW5030B8260B
<1	1	ug/L	1	LMM		$09002362 / 5 / 09$	6:32	SW5030B8260B
< 5	5	ug/L	1	LMM		0900236 2/5/09	6:32	SW5030B8260B
<2	2	ug/L	1	LMM		$0900236215 / 09$	6:32	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	6:32	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	6:32	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	6:32	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	6:32	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	6:32	SW5030B8260B
<30	30	ug/L	1	LMM		0900236 2/5/09	6:32	SW5030B8260B
<10	10	ug/L	1	LMM		0900236 2/5/09	6:32	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	6:32	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	6:32	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	6:32	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	6:32	SW5030B8260B
<10	10	ug/L	1	LMM		$09002362 / 5 / 09$	6:32	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	6:32	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	6:32	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	6:32	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	6:32	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	6:32	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	6:32	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	6:32	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	6:32	SW5030B8260B
< 0.6	0.6	ug/L	1	LMM		$09002362 / 5 / 09$	6:32	SW5030B8260B
<50	50	ug/L	1	LMM		$09002362 / 5 / 09$	6:32	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	6:32	SW5030B8260B
<10	10	ug/L	1	LMM		0900236 2/5/09	6:32	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	6:32	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	6:32	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	6:32	SW5030B8260B
< 10	10	ug/L	1	LMM		0900236 2/5/09	6:32	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	6:32	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	6:32	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	6:32	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	6:32	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	6:32	SW5030B8260B

Project ID: 04.0024843 .01 Peterboro NHANG Armory
Lab ID: 16048
Lab Number: 16048-005
Sample ID: MW-4
Matrix: Water
Sampled: 1/29/09 12:10
Parameter
chlorobenzene
1,1,1,2-tetrachloroethane
ethylbenzene
m\&p-xylenes
o-xylene
styrene
bromoform
isopropylbenzene
1,1,2,2-tetrachloroethane
1,2,3-trichloropropane
n-propylbenzene
bromobenzene
1,3,5-trimethylbenzene
2-chlorotoluene
4-chlorotoluene
tert-butylbenzene
1,2,4-trimethylbenzene
sec-butylbenzene
1,3-dichlorobenzene
4-isopropyltoluene
1,4-dichlorobenzene
1,2-dichlorobenzene
n-butylbenzene
1,2-dibromo-3-chloropropane (DBCP)
1,2,4-trichlorobenzene
1,3,5-trichlorobenzene
hexachlorobutadiene
naphthalene
1,2,3-trichlorobenzene
Surrogate Recovery
dibromofluoromethane SUR
toluene-D8 SUR
4-bromofluorobenzene SUR

Result	Quant Limit	Instr Dil'n			Prep	Analysis		
		Units	Factor	Analyst	Date	Batch Date	Time	Reference
<2	2	ug/L	1	LMM		0900236 2/5/09	6:32	SW5030B8260B
<2	2	ugh	1	LMM		0900236 2/5/09	6:32	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	6:32	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	6:32	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	6:32	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	6:32	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 215/09	6:32	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	6:32	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	6:32	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	6:32	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	6:32	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	6:32	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	6:32	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	6:32	SW5030B8260B
<2	2	ug/L	1	LMM		$0900236215 / 09$	6:32	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	6:32	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	6:32	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	6:32	SW5030B8260B
<2	2	ug/L	1	LMM		$0900236215 / 09$	6:32	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	6:32	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	6:32	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	6:32	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	6:32	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 215/09	6:32	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	6:32	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	6:32	SW5030B8260B
<0.5	0.5	ug/L	1	LMM		$0900236215 / 09$	6:32	SW5030B8260B
< 5	5	ugh	1	LMM		$0900236215 / 09$	6:32	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	6:32	SW5030B8260B
Limits								
102	78-114	\%	1	LMM		0900236 2/5/09	6:32	SW5030B8260B
96	88-110	\%	1	LMM		0900236 2/5/09	6:32	SW5030B8260B
87	86-115	\%	1	LMM		0900236 2/5/09	6:32	SW5030B8260B

Project ID: 04.0024843.01 Peterboro NHANG Armory
Lab ID: 16048
Lab Number: 16048-006
Sample ID: Equip Blank
Matrix: Water
Sampled: 1/29/09 11:00
Parameter
dichlorodifluoromethane
chloromethane
vinyl chloride
bromomethane
chloroethane
trichlorofluoromethane
diethyl ether
acetone
1,1-dichloroethene
methylene chloride
carbon disulfide
methyl t-butyl ether (MTBE)
trans-1,2-dichloroethene
isopropyl ether (DIPE)
ethyl t-butyl ether (ETBE)
1,1-dichloroethane
t-butanol (TBA)
2-butanone (MEK)
2,2-dichloropropane
cis-1,2-dichloroethene chloroform
bromochloromethane
tetrahydrofuran (THF)
1,1,1-trichloroethane
1,1-dichloropropene
t-amyl-methyl ether (TAME)
carbon tetrachloride
1,2-dichloroethane
benzene
trichloroethene
1,2-dichloropropane
bromodichloromethane
1,4-dioxane
dibromomethane
4-methyl-2-pentanone (MIBK)
cis-1,3-dichloropropene
toluene
trans-1,3-dichloropropene
2-hexanone
1,1,2-trichloroethane
1,3-dichloropropane
tetrachloroethene
dibromochloromethane
1,2-dibromoethane (EDB)

Result	Quant Limit	Instr Dil'n			PrepDate	Analysis		
		Units	Factor	Analyst		Batch Date	Time	Reference
<2	2	ug/L	1	LMM		0900236 2/5/09	4:32	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	4:32	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	4:32	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	4:32	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	4:32	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	4:32	SW5030B8260B
< 5	5	ug/L	1	LMM		$09002362 / 5 / 09$	4:32	SW5030B8260B
<50	50	ug/L	1	LMM		0900236 2/5/09	4:32	SW5030B8260B
<1	1	ug/L	1	LMM		0900236 2/5/09	4:32	SW5030B8260B
< 5	5	ug/L	1	LMM		$09002362 / 5 / 09$	4:32	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	4:32	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	4:32	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	4:32	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	4:32	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	4:32	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	4:32	SW5030B8260B
<30	30	ug/L	1	LMM		0900236 2/5/09	4:32	SW5030B8260B
< 10	10	ug/L	1	LMM		0900236 2/5/09	4:32	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	4:32	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	4:32	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	4:32	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	4:32	SW5030B8260B
<10	10	ug/L	1	LMM		0900236 2/5/09	4:32	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	4:32	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	4:32	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	4:32	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	4:32	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	4:32	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	4:32	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	4:32	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	4:32	SW5030B8260B
< 0.6	0.6	ug/L	1	LMM		0900236 2/5/09	4:32	SW5030B8260B
<50	50	ug/L	1	LMM		0900236 2/5/09	4:32	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	4:32	SW5030B8260B
<10	10	ug/L	1	LMM		0900236 2/5/09	4:32	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	4:32	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	4:32	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	4:32	SW5030B8260B
<10	10	ug/L	1	LMM		0900236 2/5/09	4:32	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	4:32	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	4:32	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	4:32	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	4:32	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	4:32	SW5030B8260B

Lab Number: 16048-006
Sample ID: Equip Blank
Matrix: Water
Sampled: 1/29/09 11:00
Parameter
chlorobenzene
1,1,1,2-tetrachloroethane
ethylbenzene
m\&p-xylenes
o-xylene
styrene
bromoform
isopropylbenzene
1,1,2,2-tetrachloroethane
1,2,3--richloropropane
n-propylbenzene
bromobenzene
1,3,5-trimethylbenzene
2-chlorotoluene
4-chlorotoluene
tert-butylbenzene
1,2,4-trimethylbenzene
sec-butylbenzene
1,3-dichlorobenzene
4-isopropyltoluene
1,4-dichlorobenzene
1,2-dichlorobenzene
n-butylbenzene
1,2-dibromo-3-chloropropane (DBCP)
1,2,4-trichlorobenzene
1,3,5-trichlorobenzene
hexachlorobutadiene
naphthalene
1,2,3-trichlorobenzene
Surrogate Recovery
dibromofluoromethane SUR
toluene-D8 SUR
4-bromofluorobenzene SUR

	Quant	Instr Dil'n			Prep	Analysis		
Result	Limit	Units	Factor	Analyst	Date	Batch Date	Time	Reference
<2	2	ug/L	1	LMM		0900236 2/5/09	4:32	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	4:32	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	4:32	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	4:32	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	4:32	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	4:32	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	4:32	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	4:32	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	4:32	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	4:32	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	4:32	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	4:32	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	4:32	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	4:32	SW5030B8260B
<2	2	ug/L	1	LMM		$0900236215 / 09$	4:32	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	4:32	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	4:32	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	4:32	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	4:32	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	4:32	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	4:32	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	4:32	SW5030B8260B
<2	2	ug/L	1	LMM		$0900236215 / 09$	4:32	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	4:32	SW5030B8260B
<2	2	ug/L	1	LMM		0900236 2/5/09	4:32	SW5030B8260B
<2	2	ug/L	1	LMM		$0900236215 / 09$	4:32	SW5030B8260B
<0.5	0.5	ug/L	1	LMM		$09002362 / 5 / 09$	4:32	SW5030B8260B
< 5	5	ug/L	1	LMM		$09002362 / 5 / 09$	4:32	SW5030B8260B
<2	2	ug/L	1	LMM		$09002362 / 5 / 09$	4:32	SW5030B8260B
	Limits							
94	78-114	\%	1	LMM		0900236 2/5/09	4:32	SW5030B8260B
96	88-110	\%	1	LMM		$09002362 / 5 / 09$	4:32	SW5030B8260B
90	86-115	\%	1	LMM		0900236 2/5/09	4:32	SW5030B8260B

Project ID: 04.0024843.01 Peterboro NHANG Armory
Lab ID: 16048
Lab Number: 16048-007
Sample ID: Trip Blank Matrix: Water
Sampled: 1/29/09
Parameter
dichlorodifluoromethane chloromethane
vinyl chloride
bromomethane chloroethane
trichlorofluoromethane
diethyl ether
acetone
1,1-dichloroethene
methylene chloride
carbon disulfide
methyl t-butyl ether (MTBE) trans-1,2-dichloroethene isopropyl ether (DIPE) ethyl t-butyl ether (ETBE) 1,1-dichloroethane 2-butanone (MEK) 2,2-dichloropropane cis-1,2-dichloroethene chloroform bromochloromethane tetrahydrofuran (THF)
1,1,1-trichloroethane

1,1-dichloropropene
t-amyl-methyl ether (TAME) carbon tetrachloride
1,2-dichloroethane benzene
trichloroethene
1,2-dichloropropane
bromodichloromethane
1,4-dioxane
dibromomethane
4-methyl-2-pentanone (MIBK)
cis-1,3-dichloropropene
toluene
trans-1,3-dichloropropene
2-hexanone
1,1,2-trichloroethane
1,3-dichloropropane
tetrachloroethene
dibromochloromethane
1,2-dibromoethane (EDB)

Result	Quant Limit	Instr Dil'n		
		Units	Factor	Analyst
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
< 5	5	ug/L	1	LMM
< 50	50	ug/L	1	LMM
<1	1	ug/L	1	LMM
< 5	5	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<30	30	ug/L	1	LMM
<10	10	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<10	10	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<0.6	0.6	ug/L	1	LMM
< 50	50	ug/L	1	LMM
<2	2	ug/L	1	LMM
<10	10	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<10	10	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM

Project ID: 04.0024843 .01 Peterboro NHANG Armory
Lab ID: 16048
Lab Number: 16048-007
Sample ID: Trip Blank
Matrix: Water
Sampled: 1/29/09
Parameter
chlorobenzene
1,1,1,2-tetrachloroethane
ethylbenzene
m\&p-xylenes
o-xylene
styrene
bromoform
isopropylbenzene
1,1,2,2-tetrachloroethane
1,2,3-trichloropropane
n-propylbenzene
bromobenzene
1,3,5-trimethylbenzene
2-chlorotoluene
4-chlorotoluene
tert-butylbenzene
1,2,4-trimethylbenzene
sec-butylbenzene
1,3-dichlorobenzene
4-isopropyltoluene
1,4-dichlorobenzene
1,2-dichlorobenzene
n-butylbenzene
1,2-dibromo-3-chloropropane (DBCP)
1,2,4-trichlorobenzene
1,3,5-trichlorobenzene
hexachlorobutadiene
naphthalene
1,2,3-trichlorobenzene
Surrogate Recovery
dibromofluoromethane SUR
toluene-D8 SUR
4-bromofluorobenzene SUR

Result	Quant	Instr Dil'n		
	Limit	Units	Factor	Analyst
<2	2	ug/	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<2	2	ug/L	1	LMM
<0.5	0.5	ug/L	1	LMM
< 5	5	ug/L	1	LMM
<2	2	ug/L	1	LMM
	Limits			
96	78-114	\%	1	LMM
97	88-110	\%	1	LMM
90	86-115	\%	1	LMM

Project ID: 04.0024843 .01 Peterboro NHANG Armory
Lab ID: 16048
Lab Number: 16048-001
Sample ID: MW-1
Matrix: Water
Sampled: 1/29/09 13:40
Parameter
naphthalene
2-methylnaphthalene
acenaphthylene
acenaphthene
dibenzofuran
fluorene
phenanthrene anthracene
fluoranthene
pyrene
benzo(a)anthracene
chrysene
benzo(b)fluoranthene
benzo(k)fluoranthene
benzo(a)pyrene
indeno(1,2,3-cd)pyrene
dibenzo(a,h)anthracene
benzo(g,h,i)perylene
Surrogate Recovery
2-fluorobiphenyI SUR
o-terphenyI SUR

	Quant	Instr Dil'n		Prep	Analysis			
Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	19:47	SW3510B8270C
< 0.5	0.5	ug/	1	AJD 2/4/09	1976	2/4/09	19:47	SW3510B8270C
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	19:47	SW3510B8270C
< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	19:47	SW3510B8270C
< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	19:47	SW3510B8270C
< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	19:47	SW3510B8270C
< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	19:47	SW3510B8270C
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	19:47	SW3510B8270C
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	19:47	SW3510B8270C
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	19:47	SW3510B8270C
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	19:47	SW3510B8270C
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	19:47	SW3510B8270C
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	19:47	SW3510B8270C
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	19:47	SW3510B8270C
<0.2	0.2	ug/L	1	AJD 2/4/09	1976	2/4/09	19:47	SW3510b8270C
< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	19:47	SW3510B8270C
< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	19:47	SW3510B8270C
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	19:47	SW3510B8270C
	Limits							
64	43-116	\%	1	AJD 2/4/09	1976	2/4/09	19:47	SW3510B8270C
70	33-141	\%	1	A.JD 2/4/09	1976	2/4/09	19:47	SW3510B827

$\mathbf{R L}_{\text {resource Laboratories, LLC }}$

Project ID: 04.0024843 .01 Peterboro NHANG Armory
Lab ID: 16048
Lab Number: 16048-002
Sample ID: MW-2
Matrix: Water
Sampled: 1/29/09 11:40
Parameter
naphthalene
2-methylnaphthalene
acenaphthylene
acenaphthene
dibenzofuran
fluorene
phenanthrene
anthracene
fluoranthene
pyrene
benzo(a)anthracene
chrysene
benzo(b)fluoranthene
benzo(k)fluoranthene
benzo(a)pyrene indeno(1,2,3-cd)pyrene dibenzo(a,h)anthracene benzo(g.h,i)perylene Surrogate Recovery 2-fluorobiphenyI SUR o-terphenyl SUR

	Quant	Instr Dil'n		Prep	Analysis			
Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	20:25	SW3510B8270C
< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	20:25	SW3510B8270C
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	20:25	SW3510B8270C
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	20:25	SW3510B8270C
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	20:25	SW3510B8270C
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	20:25	SW3510B8270C
<0.5	0.5	ug/L	1	AJD 214/09	1976	2/4/09	20:25	SW3510B8270C
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	20:25	SW3510B8270C
< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	20:25	SW3510B8270C
< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	20:25	SW3510B8270C
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	20:25	SW3510B8270C
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	20:25	SW3510B8270C
< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	20:25	SW3510B8270C
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	20:25	SW3510B8270C
<0.2	0.2	ug/L	1	AJD 2/4/09	1976	2/4/09	20:25	SW3510B8270C
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	214/09	20:25	SW3510B8270C
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	20:25	SW3510B8270C
< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	20:25	SW3510B8270C
	Limits							
65	43-116	\%	1	AJD 2/4/09	1976	2/4/09	20:25	SW3510B8270C
76	33-141	\%	1	AJD 2/4/09	1976	2/4/09	20:25	SW3510B8270C

Project ID: 04.0024843 .01 Peterboro NHANG Armory
Lab ID: 16048
Lab Number: 16048-003
Sample ID: MW-3 dup
Matrix: Water
Sampled: 1/29/09 12:25
Parameter
naphthalene
2-methylnaphthalene
acenaphthylene
acenaphthene
dibenzofuran
fluorene
phenanthrene
anthracene
fluoranthene
pyrene
benzo(a)anthracene
chrysene
benzo(b)fluoranthene
benzo(k)fluoranthene benzo(a)pyrene indeno(1,2,3-cd)pyrene dibenzo(a,h)anthracene benzo(g,h,i)perylene Surrogate Recovery 2-fluorobiphenyI SUR o-terphenyI SUR

	Quant	Instr Dil'n		Prep	Analysis			
Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	21:02	SW3510B8270C
< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	21:02	SW3510B8270C
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	21:02	SW3510B8270C
< 0.5	0.5	ug/	1	AJD 2/4/09	1976	2/4/09	21:02	SW3510B8270C
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	21:02	SW3510B8270C
<0.5	0.5	ug/L	1	A.JD 214/09	1976	2/4/09	21:02	SW3510B8270C
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	21:02	SW3510B8270C
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	21:02	SW3510B8270C
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	21:02	SW3510B8270C
< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	21:02	SW3510B8270C
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	21:02	SW3510B8270C
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	214/09	21:02	SW3510B8270C
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	21:02	SW3510B8270C
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	21:02	SW3510B8270C
< 0.2	0.2	ug/L	1	AJD 2/4/09	1976	2/4/09	21:02	SW3510B8270C
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	21:02	SW3510B8270C
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	21:02	SW3510B8270C
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	21:02	SW3510B8270C
	Limits							
63	43-116	\%	1	AJD 2/4/09	1976	2/4/09	21:02	SW3510B8270C
75	33-141	\%	1	AJD 2/4/09	1976	2/4/09	21:02	SW3510B8270C

Project ID: 04.0024843 .01 Peterboro NHANG Armory
Lab ID: 16048
Lab Number: 16048-004
Sample ID: MW-3
Matrix: Water
Sampled: 1/29/09 12:30
Parameter
naphthalene
2-methylnaphthalene
acenaphthylene
acenaphthene
dibenzofuran
fluorene
phenanthrene anthracene fluoranthene pyrene benzo(a)anthracene chrysene benzo(b)fluoranthene benzo(k)fluoranthene benzo(a)pyrene indeno(1,2,3-cd)pyrene dibenzo(a,h)anthracene benzo(g,h,i)perylene Surrogate Recovery 2-fluorobiphenyl SUR o-terphenyl SUR

	ant	Instr Dil'n		Prep	Analysis			
Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	21:40	SW3510B8270C
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	21:40	SW3510B8270C
< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	21:40	SW3510B8270C
< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	21:40	SW3510B8270C
< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	21:40	SW3510B8270C
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	21:40	SW3510B8270C
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	214/09	21:40	SW3510B8270C
< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	21:40	SW3510B8270C
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	214/09	21:40	SW3510B8270C
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	21:40	SW3510B8270C
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	21:40	SW3510B8270C
< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	21:40	SW3510B8270C
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	21:40	SW3510B8270C
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	21:40	SW3510B8270C
<0.2	0.2	ug/L	1	AJD 2/4/09	1976	2/4/09	21:40	SW3510B8270C
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	214/09	21:40	SW3510B8270C
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	21:40	SW3510B8270C
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	21:40	SW3510B8270C
	Limits							
63	43-116	\%	1	AJD 2/4/09	1976	2/4/09	21:40	SW3510B8270C
76	33-141	\%	1	AJD 2/4/09	1976	2/4/09	21:40	SW3510B8270C

Project ID: 04.0024843.01 Peterboro NHANG Armory
Lab ID: 16048
Lab Number: 16048-005
Sample ID: MW-4
Matrix: Water
Sampled: 1/29/09 12:10
Parameter
naphthalene
2-methyinaphthalene
acenaphthylene
acenaphthene
dibenzofuran
fluorene
phenanthrene
anthracene
fluoranthene
pyrene
benzo(a)anthracene
chrysene
benzo(b)fluoranthene
benzo(k)fluoranthene
benzo(a)pyrene
indeno(1,2,3-cd)pyrene
dibenzo(a,h)anthracene
benzo(g,h,i)perylene
Surrogate Recovery
2-fluorobiphenyl SUR
o-terphenyl SUR

Result	Quant	Instr Dil'n		Prep	Analysis			
	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	22:17	SW3510B8270C
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	22:17	SW3510B8270C
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	22:17	SW3510B8270C
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	22:17	SW3510B8270C
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	22:17	SW3510B8270C
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	22:17	SW3510B8270C
1.0	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	22:17	SW3510B8270C
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	22:17	SW3510B8270C
1.6	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	22:17	SW3510B8270C
1.9	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	22:17	SW3510B8270C
0.8	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	22:17	SW3510B8270C
1.0	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	22:17	SW3510B8270C
0.8	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	22:17	SW3510B8270C
0.7	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	22:17	SW3510B8270C
0.9	0.2	ug/L	1	AJD 2/4/09	1976	2/4/09	22:17	SW3510B8270C
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	22:17	SW3510B8270C
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	22:17	SW3510B8270C
< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	22:17	SW3510B8270C
	Limits							
56	43-116	\%	1	AJD 2/4/09	1976	2/4/09	22:17	SW3510B8270C
59	33-141	\%	1	AJD 2/4/09	1976	2/4/09	22:17	SW3510B8270C

Project ID: 04.0024843 .01 Peterboro NHANG Armory
Lab ID: 16048
Lab Number: 16048-006
Sample ID: Equip Blank
Matrix: Water
Sampled: 1/29/09 11:00
Parameter
naphthalene
2-methylnaphthalene
acenaphthylene
acenaphthene
dibenzofuran
fluorene
phenanthrene
anthracene
fluoranthene
pyrene
benzo(a)anthracene
chrysene
benzo(b)fluoranthene
benzo(k)fluoranthene
benzo(a)pyrene
indeno(1,2,3-cd)pyrene
dibenzo(a,h)anthracene
benzo(g,h,i)perylene
Surrögate Recovery
2-fluorobiphenyI SUR
o-terphenyI SUR

Result		Instr Dil'n		Prep	Analysis			
	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	22:55	SW3510B8270C
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	22:55	SW3510B8270C
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	22:55	SW3510B8270C
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	22:55	SW3510B8270C
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	214/09	22:55	SW3510B8270C
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	22:55	SW3510B8270C
< 0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	22:55	SW3510B8270C
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	22:55	SW3510B8270C
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	22:55	SW3510B8270C
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	22:55	SW3510B8270C
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	22:55	SW3510B8270C
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	22:55	SW3510B8270C
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	22:55	SW3510B8270C
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	22:55	SW3510B8270C
<0.2	0.2	ug/L	1	AJD 2/4/09	1976	2/4/09	22:55	SW3510B8270C
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	22:55	SW3510B8270C
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	22:55	SW3510B8270C
<0.5	0.5	ug/L	1	AJD 2/4/09	1976	2/4/09	22:55	SW3510B8270C
Limits								
69	43-116	\%	1	AJD 2/4/09	1976	2/4/09	22:55	SW3510B8270C
77	33-141	\%	1	AJD 2/4/09	1976	2/4/09	22:55	SW3510B8270C

Project ID: 04.0024843 .01 Peterboro NHANG Armory
Lab ID: 16048
Lab Number: 16048-001
Sample ID: MW-1
Matrix: Water
Sampled: 1/29/09 13:40
Parameter
Arsenic
Barium
Cadmium
Chromium
Lead
Mercury
Selenium
Silver
Lab Number: 16048-002
Sample ID: MW-2 Matrix: Water
Sampled: 1/29/09 11:40
Parameter
Arsenic
Barium
Cadmium
Chromium
Lead
Mercury

Selenium

S:'ver
Lab Number: 16048-003
Sample ID: MW-3 dup
Matrix: Water
Sampled: 1/29/09 12:25
P?rameter
Arsenic
Barium
Cadmium
Chromium
Lead
Mercury
Selenium
Silver

	Quant	Instr Dil'n			Prep	Analysis			
Result	Limit	Units	Factor	Analyst	Date	Batch	Date	Time	Reference
<0.008	0.008	mg / L	1	BJS		0900226	2/3/09	15:45	SW3005A6010B
< 0.05	0.05	mg / L	1	BJS		0900226	2/3/09	15:45	SW3005A6010B
<0.005	0.005	mg / L	1	BJS		0900226	2/3/09	15:45	SW3005A6010B
< 0.05	0.05	mg / L	1	BJS		0900226	2/3/09	15:45	SW3005A6010B
<0.008	0.008	mg / L	1	BJS		0900226	2/3/09	15:45	SW3005A6010B
< 0.0009	0.0009	mg / L	1	BJS		0900199	1/30/09		SW7470A
<0.05	0.05	mg / L	1	BJS		0900226	2/3/09	15:45	SW3005A6010B
<0.007	0.007	mg / L	1	BJS		0900226	2/3/09	15:45	SW3005A6010B

	Quant	Instr Dil'n				Prep	Analysis		
Result	Limit	Units	Factor	Analyst	Date	Batch	Date	Time	
Reference									
<0.008	0.008	mg / L	1	BJS	0900226	$2 / 3 / 09$	$15: 49$	SW3005A6010B	
<0.05	0.05	mg / L	1	BJS	0900226	$2 / 3 / 09$	$15: 49$	SW3005A6010B	
<0.005	0.005	mg / L	1	BJS	$09002262 / 3 / 09$	$15: 49$	SW3005A6010B		
<0.05	0.05	mg / L	1	BJS	$09002262 / 3 / 09$	$15: 49$	SW3005A6010B		
<0.008	0.008	mg / L	1	BJS	$09002262 / 3 / 09$	$15: 49$	SW3005A6010B		
<0.0009	0.0009	mg / L	1	BJS	0900199	$1 / 30 / 09$		SW7470A	
<0.05	0.05	mg / L	1	BJS	$09002262 / 3 / 09$	$15: 49$	SW3005A6010B		
<0.007	0.007	mg / L	1	BJS	0900226	$2 / 3 / 09$	$15: 49$	SW3005A6010B	

Result	Quant	Instr Dil'n			Prep	Analysis			
	Limit	Units	Factor	Analyst	Date	Batch	Date	Time	Reference
<0.008	0.008	mg / L	1	BJS		0900226	2/3/09	15:56	SW3005A6010B
<0.05	0.05	mg / L	1	BJS		0900226	2/3/09	15:56	SW3005A6010B
<0.005	0.005	mg / L	1	BJS		0900226	2/3/09	15:56	SW3005A6010B
< 0.05	0.05	mg / L	1	BJS		0900226	2/3/09	15:56	SW3005A6010B
<0.008	0.008	mg / L	1	BJS		0900226	2/3/09	15:56	SW3005A6010B
<0.0009	0.0009	mg / L	1	BJS		0900199	1/30/09		SW7470A
< 0.05	0.05	mg / L	1	BJS		0900226	2/3/09	15:56	SW3005A6010B
<0.007	0.007	mg / L	1	BJS		0900226	2/3/09	15:56	SW3005A6010B

Project ID: 04.0024843.01 Peterboro NHANG Armory
Lab ID: 16048
Lab Number: 16048-004
Sample ID: MW-3
Matrix: Water

Sampled: 1/29/09 12:30
Parameter
Arsenic
Barium
Cadmium
Chromium
Lead
Mercury
Selenium
Silver
Lab Number: 16048-005
Sample ID: MW-4
Matrix: Water
Sampled: 1/29/09 12:10
Parameter
Arsenic
Barium
Cadmium
Chromium
Lead
Mercury
Selenium
Siver
L.ab Number: 16048-006

Sample ID: Equip Blank
Matrix: Water
Sampled: 1/29/09 11:00

Parameter	Result	Limit
Arsenic	<0.008	0.008
Earium	<0.05	0.05
Cadmium	<0.005	0.005
C'romium	<0.05	0.05
Lead	<0.008	0.008
Mercury	<0.0009	0.0009
Selenium	<0.05	0.05
Slyer	<0.007	0.007

\(\left.$$
\begin{array}{rr} & \begin{array}{r}\text { Quant } \\
\text { Result }\end{array}
$$

Limit\end{array}\right\}\)| <0.008 | 0.008 |
| ---: | ---: |
| <0.05 | 0.05 |
| <0.005 | 0.005 |
| <0.05 | 0.05 |
| <0.008 | 0.008 |
| <0.0009 | 0.0009 |
| <0.05 | 0.05 |
| <0.007 | 0.007 |

Instr Dil'n		
Units	Factor	Analyst
mg / L	1	BJS
mg / L	1	BJS
mg / L	1	BJS
mg / L	1	BJS
mg / L	1	BJS
mg / L	1	BJS
mg / L	1	BJS
mg / L	1	BJS

Prep Date	Analysis		
Batch	Date	Time	Reference
0900226	$2 / 3 / 09$	$15: 59$	SW3005A6010B
0900226	$2 / 3 / 09$	$15: 59$	SW3005A6010B
0900226	$2 / 3 / 09$	$15: 59$	SW3005A6010B
0900226	$2 / 3 / 09$	$15: 59$	SW3005A6010B
0900226	$2 / 3 / 09$	$15: 59$	SW3005A6010B
0900199	$1 / 30 / 09$		SW7470A
0900226	$2 / 3 / 09$	$15: 59$	SW3005A6010B
0900226	$2 / 3 / 09$	$15: 59$	SW3005A6010B

Result	Quant	Instr Dil'n			Prep	Analysis			
	Limit	Units	Factor	Analyst	Date	Batch	Date	Time	Reference
<0.008	0.008	mg / L	1	BJS		0900226	2/3/09	16:19	SW3005A6010B
<0.05	0.05	mg / L	1	BJS		0900226	2/3/09	16:19	SW3005A6010B
<0.005	0.005	mg / L	1	BJS		0900226	2/3/09	16:19	SW3005A6010B
<0.05	0.05	mg / L	1	BJS		0900226	2/3/09	16:19	SW3005A6010B
<0.008	0.008	mg / L	1	BJS		0900226	2/3/09	16:19	SW3005A6010B
< 0.0009	0.0009	mg / L	1	BJS		0900199	1/30/09		SW7470A
<0.05	0.05	mg / L	1	BJS		0900226	2/3/09	16:19	SW3005A6010B
<0.007	0.007	mg / L	1	BJS		0900226	2/3/09	16:19	SW3005A6010B

	Quant	Instr Dil'n			Prep	Analysis			
Result	Limit	Units	Factor	Analyst	Date	Batch	Date	Time	Reference
<0.008	0.008	mg / L	1	BJS		0900226	2/3/09	16:23	SW3005A6010B
<0.05	0.05	mg / L	1	BJS		0900226	2/3/09	16:23	SW3005A6010B
<0.005	0.005	mg / L	1	BJS		0900226	2/3/09	16:23	SW3005A6010B
<0.05	0.05	mg / L	1	BJS		0900226	2/3/09	16:23	SW3005A6010B
<0.008	0.008	mg / L	1	BJS		0900226	2/3/09	16:23	SW3005A6010B
<0.0009	0.0009	mg / L	1	BJS		0900199	1/30/09		SW7470A
<0.05	0.05	mg / L	1	BJS		0900226	2/3/09	16:23	SW3005A6010B
<0.007	0.007	mg / L	1	BJS		0900226	2/3/09	16:23	SW3005A6010B

Quality Control Report

RESOURCE LABORATORIES, LLC

Case Narrative

Lab \# 16048

Sample Receiving and Chain of Custody Discrepancies

Samples were received in acceptable condition, at 2 degrees C, on ice, and in accordance with sample handling, preservation and integrity guidelines.
MW-3 and MW-3 DUP did not have sufficient volume to perform the mercury analysis. At the customer's request, sample volume was taken from the PAH sample bottle, filtered at the lab, and preserved for mercury analysis.

Calibration

No exceptions noted.

Method Blank

No exceptions noted.

Surrogate Recoveries

No exceptions noted.

Laboratory Control Sample Results

VOC: The LCS/LCSD0900236 did not meet the acceptance criteria for 2,2-dichloropropane. This compound is known to be problematic in the method. Refer to the QC association table to determine which samples were effected.

Matrix Spike/Matrix Spike Duplicate/Duplicate Results

Not requested for this project.
Other
QC: A sample association table is provided for cross reference of sample and lab IDs and associated quality control samples.

Reporting Limits: Dilutions performed during the analysis are noted on the result pages.
No other exceptions noted.

- QC Association Table -

Analysis	QC Number	Field ID	Lab ID
PAHs in water by 8270C SW3510B8270C			
	1976	MW-1	16048-001
		MW-2	16048-002
		MW-3 dup	16048-003
		MW-3	16048-004
		MW-4	16048-005
		Equip Blank	16048-006
VOCs in water by 82608 SW5030B8260B			
	0900236	MW-1	16048-001
		MW-2	16048-002
		MW-3 dup	16048-003
		MW-4	16048-005
		Equip Blank	16048-006
		Trip Blank	16048-007
VOCs in water by 8260B SW5030B8260B			
	0900247	MW-3	16048-004

- QC Report -

Method QCID	Parameter Associated Sample	Result Units Amt Added \%R	Limit	RPD	RPD Limit
SW5030B8260B BLK0900236	isopropylbenzene	< $2 \mathrm{ug} / \mathrm{L}$			
	1,1,2,2-tetrachloroethane	< $2 \mathrm{ug} / \mathrm{L}$			
	1,2,3-trichloropropane	< $2 \mathrm{ug} / \mathrm{L}$			
	n-propylbenzene	< 2 ugll			
	bromobenzene	< $2 \mathrm{ug} / \mathrm{L}$			
	1,3,5-trimethylbenzene	< $2 \mathrm{ug} / \mathrm{L}$			
	2-chlorotoluene	< $2 \mathrm{ug} / \mathrm{L}$			
	4-chlorotoluene	< $2 \mathrm{ug} / \mathrm{L}$			
	tert-butylbenzene	< $2 \mathrm{ug} / \mathrm{L}$			
	1,2,4-trimethylbenzene	< $2 \mathrm{ug} / \mathrm{L}$			
	sec-butylbenzene	< 2 ugll			
	1,3-dichlorobenzene	< 2 ughl			
	4-isopropyltoluene	< 2 ugh			
	1,4-dichlorobenzene	< $2 \mathrm{ug} / \mathrm{L}$			
	1,2-dichlorobenzene	< $2 \mathrm{ug} / \mathrm{L}$			
	n-butylbenzene	< $2 \mathrm{ug} / \mathrm{L}$			
	1,2-dibromo-3-chloropropane	< $2 u g / L$			
	1,2,4-trichlorobenzene	< 2 ug/L			
	1,3,5-trichlorobenzene	< 2 ugh			
	hexachlorobutadiene	< $2 \mathrm{ug} / \mathrm{L}$			
	naphthalene	< $5 \mathrm{ug} / \mathrm{L}$			
	1,2,3-trichlorobenzene	< $2 \mathrm{ug} / \mathrm{L}$			
	dibromofluoromethane SUR	98%	$78 \quad 114$		
	toluene-D8 SUR	98%	88110		
	4-bromofluorobenzene SUR	92 \%	$86 \quad 115$		

Method QCID	Parameter Associated Sample	Result Units	Amt Added	\%R	Limit		RPD	RPD Limit
SW503088260B LCS0900236	dichlorodifluoromethane	$18 \mathrm{ug} / \mathrm{L}$	20	91	70	130		
	chloromethane	$15 \mathrm{ug} / \mathrm{L}$	20	75	70	130		
	vinyl chloride	$17 \mathrm{ug} / \mathrm{L}$	20	83	70	130		
	bromomethane	$23 \mathrm{ug} / \mathrm{L}$	20	117	70	130		
	chloroethane	$19 \mathrm{ug} / \mathrm{L}$	20	93	70	130		
	trichlorofluoromethane	$19 \mathrm{ug} / \mathrm{L}$	20	96	70	130		
	diethyl ether	$21 \mathrm{ug} / \mathrm{L}$	20	106	70	130		
	acetone	$25 \mathrm{ug} / \mathrm{L}$	20	123	70	130		
	1,1-dichloroethene	$20 \mathrm{ug} / \mathrm{L}$	20	98	70	130		
	methylene chloride	$22 \mathrm{ug} / \mathrm{L}$	20	110	70	130		
	carbon disulfide	$16 \mathrm{ug} / \mathrm{L}$	20	82	70	130		
	methyl t-butyl ether (MTBE)	21 ug/L	20	107	70	130		
	trans-1,2-dichloroethene	$20 \mathrm{ug} / \mathrm{L}$	20	99	70	130		
	isopropyl ether (DIPE)	$21 \mathrm{ug} / \mathrm{L}$	20	106	70	130		
	ethyl l-butyl ether (ETBE)	$24 \mathrm{ug} / \mathrm{L}$	20	118	70	130		
	1,1-dichloroethane	$20 \mathrm{ug} / \mathrm{L}$	20	99	70	130		
	t-butanol (TBA)	$110 \mathrm{ug} / \mathrm{L}$	100	108	70	130		
	2-butanone (MEK)	$20 \mathrm{ug} / \mathrm{L}$	20	99	70	130		
	2,2-dichloropropane	$12 \mathrm{ug} / \mathrm{L}$	20	61	* 70	130		
	cis-1,2-dichloroethene	$20 \mathrm{ug} / \mathrm{L}$	20	100	70	130		
	chloroform	19 ug/L	20	95	70	130		
	bromochloromethane	20 ugh	20	101	70	130		
	tetrahydrofuran (THF)	$20 \mathrm{ug} / \mathrm{L}$	20	102	70	130		
	1,1,1-trichloroethane	16 ug/L	20	81	70	130		
	1,1-dichloropropene	$20 \mathrm{ug} / \mathrm{L}$	20	102	70	130		
	t-amyl-methyl ether (TAME)	$18 \mathrm{ug} / \mathrm{L}$	20	88	70	130		
	carbon tetrachloride	$14 \mathrm{ug} / \mathrm{L}$	20	72	70	130		
	1,2-dichloroethane	$21 \mathrm{ug} / \mathrm{L}$	20	104	70	130		
	benzene	$22 \mathrm{ug} / \mathrm{L}$	20	110	70	130		
	trichloroethene	$20 \mathrm{ug} / \mathrm{L}$	20	100	70	130		
	1,2-dichloropropane	$20 \mathrm{ug} / \mathrm{L}$	20	102	70	130		
	bromodichloromethane	$18 \mathrm{ug} / \mathrm{L}$	20	90	70	130		
	1,4-dioxane	< $50 \mathrm{ug} / \mathrm{L}$	40	105				
	dibromomethane	$20 \mathrm{ug} / \mathrm{L}$	20	100	70	130		
	4-methyl-2-pentanone (MIBK)	18 ugiL	20	89	70	130		
	cis-1,3-dichloropropene	$15 \mathrm{ug} / \mathrm{L}$	20	77	70	130		
	toluene	$20 \mathrm{ug} / \mathrm{L}$	20	101	70	130		
	trans-1,3-dichloropropene	$17 \mathrm{ug} / \mathrm{L}$	20	84	70	130		
	2-hexanone	$20 \mathrm{ug} / \mathrm{L}$	20	98	70	130		
	1,1,2-trichloroethane	$21 \mathrm{ug} / \mathrm{L}$	20	103	70	130		
	1,3-dichloropropane	$22 \mathrm{ug} / \mathrm{L}$	20	110	70	130		
	tetrachloroethene	$22 \mathrm{ug} / \mathrm{L}$	20	109	70	130		
	dibromochloromethane	$14 \mathrm{ug} / \mathrm{L}$	20	72	70	130		
	1,2-dibromoethane (EDB)	$18 \mathrm{ug} / \mathrm{L}$	20	91	70	130		
	chlorabenzene	$22 \mathrm{ug} / \mathrm{L}$	20	112	70	130		
	1,1,1,2-tetrachloroethane	$15 \mathrm{ug} / \mathrm{L}$	20	74	70	130		
	ethylbenzene	$22 \mathrm{ug} / \mathrm{L}$	20	111	70	130		
	m\&p-xylenes	$41 \mathrm{ug} / \mathrm{L}$	40	103	70	130		
	o-xylene	21 ug/	20	106	70	130		
	styrene	$21 \mathrm{ug} / \mathrm{L}$	20	104	70	130		
	bromoform	$17 \mathrm{ug} / \mathrm{L}$	20	84	70	130		
	isopropylbenzene	$20 \mathrm{ug} / \mathrm{L}$	20	99	70	130		
	1,1,2,2-tetrachloroethane	21 ug/L	20	103	70	130		

Method QCID	Parameter Associated Sample	Result Units	Amt Added	\%R	Limit		RPD	RPD Limit
SW5030B8260B LCS0900236	1,2,3-trichloropropane	$23 \mathrm{ug} / \mathrm{L}$	20	116	70	130		
	n-propylbenzene	$20 \mathrm{ug} / \mathrm{L}$	20	98	70	130		
	bromobenzene	$22 \mathrm{ug} / \mathrm{L}$	20	109	70	130		
	1,3,5-rimethylbenzene	21 ug/	20	104	70	130		
	2-chlorotoluene	21 ug/L	20	104	70	130		
	4-chlorotoluene	$21 \mathrm{ug} / \mathrm{L}$	20	104	70	130		
	tert-butylbenzene	$19 \mathrm{ug} / \mathrm{L}$	20	94	70	130		
	1,2,4-trimethylbenzene	$21 \mathrm{ug} / \mathrm{L}$	20	103	70	130		
	sec-butylbenzene	$19 \mathrm{ug} / \mathrm{L}$	20	97	70	130		
	1,3-dichlorobenzene	23 ug/L	20	113	70	130		
	4-isopropyltoluene	$21 \mathrm{ug} / \mathrm{L}$	20	104	70	130		
	1,4-dichlorobenzene	22 ugh	20	110	70	130		
	1,2-dichlorobenzene	21 ugh	20	103	70	130		
	n-butylbenzene	$20 \mathrm{ug} / \mathrm{L}$	20	98	70	130		
	1,2-dibromo-3-chloropropane	$20 \mathrm{ug} / \mathrm{L}$	20	102	70	130		
	1,2,4-trichlorobenzene	$17 \mathrm{ug} / \mathrm{L}$	20	86	70	130		
	1,3,5-trichlorobenzene	19 ugiL	20	95	70	130		
	hexachlorobutadiene	$19 \mathrm{ug} / \mathrm{L}$	20	95	70	130		
	naphthalene	24 ug/L	20	119	70	130		
	1,2,3-trichlorobenzene	20 ugih	20	98	70	130		
	dibromofluoromethane SUR	98 \%			78	114		
	toluene-D8 SUR	100 \%			88	110		
	4-bromofluorobenzene SUR	106%			86	115		

Method QCID	Parameter Associated Sample	Result Units	Amt Added	\%R		mit	RPD	RPD Limit
SW5030B8260B LCSD0900236	dichlorodifluoromethane	$18 \mathrm{ug} / \mathrm{L}$	20	90	70	130	1	20
	chloromethane	$15 \mathrm{ug} / \mathrm{L}$	20	73	70	130	4	20
	vinyl chloride	$17 \mathrm{ug} / \mathrm{L}$	20	83	70	130	1	20
	bromomethane	$23 \mathrm{ug} / \mathrm{L}$	20	117	70	130	0	20
	chloroethane	18 ug/L	20	92	70	130	0	20
	trichlorofluoromethane	$19 \mathrm{ug} / \mathrm{L}$	20	96	70	130	0	20
	diethyl ether	21 ugh	20	104	70	130	3	20
	acetone	22 ug/L	20	109	70	130	12	20
	1,1-dichloroethene	$19 \mathrm{ug} / \mathrm{L}$	20	93	70	130	5	20
	methylene chloride	21 ug/	20	107	70	130	3	20
	carbon disulfide	$16 \mathrm{ug} / \mathrm{L}$	20	81	70	130	1	20
	methyl t-butyl ether (MTBE)	21 ug/L	20	104	70	130	3	20
	trans-1,2-dichloroethene	$19 \mathrm{ug} / \mathrm{L}$	20	96	70	130	2	20
	isopropyl ether (DIPE)	$21 \mathrm{ug} / \mathrm{L}$	20	103	70	130	3	20
	ethyl t-butyl ether (ETBE)	$24 \mathrm{ug} / \mathrm{L}$	20	119	70	130	1	20
	1,1-dichloroethane	$19 \mathrm{ug} / \mathrm{L}$	20	97	70	130	2	20
	t-butanol (TBA)	$90 \mathrm{ug} / \mathrm{L}$	100	90	70	130	18	20
	2-butanone (MEK)	$18 \mathrm{ug} / \mathrm{L}$	20	88	70	130	11	20
	2,2-dichloropropane	$13 \mathrm{ug} / \mathrm{L}$	20	63	* 70	130	4	20
	cis-1,2-dichloroethene	$20 \mathrm{ug} / \mathrm{L}$	20	99	70	130	1	20
	chloroform	$19 \mathrm{ug} / \mathrm{L}$	20	93	70	130	2	20
	bromochloromethane	$20 \mathrm{ug} / \mathrm{L}$	20	99	70	130	2	20
	tetrahydrofuran (THF)	$18 \mathrm{ug} / \mathrm{L}$	20	90	70	130	12	20
	1,1,1-trichloroethane	$17 \mathrm{ug} / \mathrm{L}$	20	84	70	130	3	20
	1,1-dichloropropene	$20 \mathrm{ug} / \mathrm{L}$	20	100	70	130	2	20
	t-amyl-methyl ether (TAME)	18 ugh	20	89	70	130	1	20
	carbon tefrachloride	$15 \mathrm{ug} / \mathrm{L}$	20	76	70	130	6	20
	1,2-dichloroethane	21 ug/L	20	104	70	130	0	20
	benzene	22 ug/	20	109	70	130	1	20
	trichloroethene	$19 \mathrm{ug} / \mathrm{L}$	20	97	70	130	4	20
	1,2-dichloropropane	$20 \mathrm{ug} / \mathrm{L}$	20	100	70	130	2	20
	bromodichloromethane	$19 \mathrm{ug} / \mathrm{L}$	20	93	70	130	3	20
	1,4-dioxane	< $50 \mathrm{ug} / \mathrm{L}$	40	87			18	20
	dibromomethane	$19 \mathrm{ug} / \mathrm{L}$	20	97	70	130	3	20
	4-methyl-2-pentanone (MIBK)	16 ug/L	20	81	70	130	9	20
	cis-1,3-dichloropropene	$16 \mathrm{ug} / \mathrm{L}$	20	79	70	130	4	20
	toluene	20 ugh	20	100	70	130	2	20
	trans-1,3-dichloropropene	$18 \mathrm{ug} / \mathrm{L}$	20	88	70	130	4	20
	2-hexanone	$18 \mathrm{ug} / \mathrm{L}$	20	89	70	130	9	20
	1,1,2-trichloroethane	$20 \mathrm{ug} / \mathrm{L}$	20	102	70	130	2	20
	1,3-dichloropropane	21 ug/L	20	106	70	130	4	20
	tetrachloroethene	$22 \mathrm{ug} / \mathrm{L}$	20	108	70	130	1	20
	dibromochloromethane	$15 \mathrm{ug} / \mathrm{L}$	20	76	70	130	5	20
	1,2-dibromoethane (EDB)	$18 \mathrm{ug} / \mathrm{L}$	20	92	70	130	1	20
	chlorobenzene	$22 \mathrm{ug} / \mathrm{L}$	20	109	70	130	2	20
	1,1,1,2-tetrachloroethane	$16 \mathrm{ug} / \mathrm{L}$	20	79	70	130	7	20
	ethylbenzene	$22 \mathrm{ug} / \mathrm{L}$	20	108	70	130	3	20
	m\&p-xylenes	$41 \mathrm{ug} / \mathrm{L}$	40	102	70	130	2	20
	o-xylene	21 ug/L	20	104	70	130	2	20
	styrene	21 ug/L	20	103	70	130	1	20
	bromoform	$17 \mathrm{ug} / \mathrm{L}$	20	87	70	130	3	20
	isopropylbenzene	$19 \mathrm{ug} / \mathrm{L}$	20	96	70	130	3	20
	1,1,2,2-tetrachloroethane	21 ug/L	20	104	70	130	2	20

Method QCID	Parameter Associated Sample	Result Units	Amt Added	\%R	Limit		RPD	RPD Limit
SW5030B8260B LCSD0900236	1,2,3-trichloropropane	$22 \mathrm{ug} / \mathrm{L}$	20	112	70	130	3	20
	n-propylbenzene	$20 \mathrm{ug} / \mathrm{L}$	20	99	70	130	1	20
	bromobenzene	$22 \mathrm{ug} / \mathrm{L}$	20	109	70	130	0	20
	1,3,5-trimethylbenzene	21 ugil	20	104	70	130	1	20
	2-chlorotoluene	21 ugh	20	104	70	130	0	20
	4-chlorotoluene	21 ug/L	20	104	70	130	0	20
	tert-butylbenzene	$19 \mathrm{ug} / \mathrm{L}$	20	94	70	130	1	20
	1,2,4-rimethylbenzene	$20 \mathrm{ug} / \mathrm{L}$	20	101	70	130	2	20
	sec-butylbenzene	$19 \mathrm{ug} / \mathrm{L}$	20	97	70	130	0	20
	1,3-dichlorobenzene	$22 \mathrm{ug} / \mathrm{L}$	20	111	70	130	2	20
	4-isopropyitoluene	$20 \mathrm{ug} / \mathrm{L}$	20	102	70	130	2	20
	1,4-dichlorobenzene	$22 \mathrm{ug} / \mathrm{L}$	20	108	70	130	2	20
	1,2-dichlorobenzene	$20 \mathrm{ug} / \mathrm{L}$	20	101	70	130	2	20
	n-butylbenzene	$19 \mathrm{ug} / \mathrm{L}$	20	95	70	130	3	20
	1,2-dibromo-3-chloropropane	21 ug/	20	105	70	130	3	20
	1,2,4-trichlorobenzene	17 ugh	20	84	70	130	2	20
	1,3,5-trichlorobenzene	$20 \mathrm{ug} / \mathrm{L}$	20	99	70	130	5	20
	hexachlorobutadiene	19 ug/	20	97	70	130	1	20
	naphthalene	$23 \mathrm{ug} / \mathrm{L}$	20	114	70	130	4	20
	1,2,3-trichlorobenzene	$19 \mathrm{ug} / \mathrm{L}$	20	94	70	130	4	20
	dibromofluoromethane SUR	98%			78	114		
	toluene-D8 SUR	101 \%			88	110		
	4-bromofluorobenzene SUR	105 \%			86	115		

Method QCID Parameter Associated Sample Result Units Amt Added \%R Limit \quad RPD RPD Limit
dichlorodifluoromethane chloromethane
vinyl chloride
bromomethane
chloroethane
trichlorofluoromethane
diethyl ether
acetone
1,1-dichloroethene
methylene chloride
carbon disulide
methyl t-butyl ether (MT8E)
trans-1,2-dichloroethene
isopropyl ether (DIPE)
ethyl t-butyl ether (ETBE)
1,1-dichloroethane
t-butanol (TBA)
2-butanone (MEK)
2,2-dichloropropane
cis-1,2-dichloroethene
chloroform
bromochloromethane
tetrahydrofuran (THF)
1,1,1-trichloroethane
1,1-dichloropropene
t-amyl-methyl ether (TAME)
carbon tetrachloride
1,2-dichloroethane
benzene
trichloroethene
1,2-dichloropropane
bromodichloromethane
1,4-dioxane
dibromomethane
4-methyl-2-pentanone (MIBK)
cis-1,3-dichloropropene
toluene
trans-1,3-dichloropropene
2-hexanone
1,1,2-trichloroethane
1,3-dichloropropane
tetrachloroethene
dibromochloromethane
1,2-dibromoethane (EDB)
chlorobenzene
1,1,1,2-tetrachloroethane
ethylbenzene
$\mathrm{m} \& \mathrm{p}$-xylenes
o-xylene
styrene
bromoform
isopropylbenzene
1,1,2,2-tetrachloroethane
< 2 ug/L
< $2 \mathrm{ug} / \mathrm{h}$
< $2 \mu \mathrm{~g} / \mathrm{L}$
< 2 ug/L
< 2 ugh
< $2 \mathrm{ug} / \mathrm{L}$
< $10 \mathrm{ug} / \mathrm{L}$
< 10 ugh
< 1 ug/L
< 5 ug/L
< 2 ugil
< 2 ugh
< $2 \mathrm{ug} / \mathrm{L}$
< 2 ugh
< $2 u g / L$
$<2 \mathrm{ug} / \mathrm{L}$
< $40 \mathrm{ug} / \mathrm{L}$
< $10 \mathrm{ug} / \mathrm{L}$
< $2 \mathrm{ug} / \mathrm{L}$
< $2 \mathrm{ug} / \mathrm{L}$
< $2 u g / L$
< $2 \mathrm{ug} / \mathrm{L}$
< $10 \mathrm{ug} / \mathrm{L}$
< $2 \mathrm{ug} / \mathrm{L}$
< $2 u g / L$
< $2 u g / \mathrm{L}$
< $2 \mathrm{ug} / \mathrm{L}$
< $2 \mathrm{ug} / \mathrm{L}$
< $2 \mathrm{ug} / \mathrm{L}$
< $50 \mathrm{ug} / \mathrm{L}$
< $2 \mathrm{ug} / \mathrm{L}$
< $10 \mathrm{ug} / \mathrm{L}$
< $2 \mathrm{ug} / \mathrm{L}$
< $2 u g / L$
< 2 ugh
< $10 \mathrm{ug} / \mathrm{L}$
< 2 ug/L
< 2 ug/L
< $2 u g / L$
< 2 ug/L
< 2 ug/L
< $2 \mathrm{ug} / \mathrm{L}$
< 2 ug/L
< $2 \mathrm{ug} / \mathrm{L}$
< 2 ugh
< 2 ugh
< $2 \mathrm{ug} / \mathrm{L}$
< $2 \mathrm{ug} / \mathrm{L}$
< $2 \mathrm{ug} / \mathrm{L}$
< $2 u g / L$

Method QCID	Parameter Associated Sample	Result Units Amt Added \%R	Limit	RPD	RPD Limit
SW5030B8260B BLK0900247	1,2,3-trichloropropane	< $2 \mathrm{ug} / \mathrm{L}$			
	n-propylbenzene	< $2 \mathrm{ug} / \mathrm{L}$			
	bromobenzene	< $2 \mathrm{ug} / \mathrm{L}$			
	1,3,5-rimethylbenzene	< $2 \mathrm{ug} / \mathrm{L}$			
	2-chlorotoluene	< $2 \mathrm{ug} / \mathrm{L}$			
	4-chlorotoluene	< $2 \mathrm{ug} / \mathrm{L}$			
	tert-butylbenzene	< $2 \mathrm{ug} / \mathrm{L}$			
	1,2,4-rimethylbenzene	< $2 \mathrm{ug} / \mathrm{l}$			
	sec-butylbenzene	< 2 ugh			
	1,3-dichlorobenzene	< 2 ugh			
	4-isopropyltoluene	< $2 \mathrm{ug} / \mathrm{L}$			
	1,4-dichlorobenzene	< $2 \mathrm{ug} / \mathrm{L}$			
	1,2-dichlorobenzene	< $2 \mathrm{ug} / \mathrm{L}$			
	n-butylbenzene	< $2 \mathrm{ug} / \mathrm{L}$			
	1,2-dibromo-3-chloropropane	< 2 ug/L			
	1,2,4-trichlorobenzene	< $2 \mathrm{ug} / \mathrm{L}$			
	1,3,5-trichlorobenzene	< $2 \mathrm{ugh} / \mathrm{L}$			
	hexachlorobutadiene	< $2 \mathrm{ug} / \mathrm{L}$			
	naphthalene	< $5 \mathrm{ug} / \mathrm{L}$			
	1,2,3-trichlorobenzene	< 2 ugh			
	dibromofluoromethane SUR	94%	$78 \quad 114$		
	toluene-D8 SUR	96%	88110		
	4-bromofluorobenzene SUR	89 \%	86115		

Method QCID	Parameter Associated Sample	Result Units	Amt Added	\%R		mit	RPD	RPD Limit
SW5030B8260B LCS0900247	dichlorodifluoromethane	19 ug/L	20	93	70	130		
	chloromethane	$15 \mathrm{ug} / \mathrm{L}$	20	75	70	130		
	vinyl chloride	18 ug/L	20	88	70	130		
	bromomethane	$23 \mathrm{ug} / \mathrm{L}$	20	116	70	130		
	chloroethane	$18 \mathrm{ug} / \mathrm{L}$	20	91	70	130		
	trichlorofluoromethane	$20 \mathrm{ug} / \mathrm{L}$	20	99	70	130		
	diethyl ether	$21 \mathrm{ug} / \mathrm{L}$	20	106	70	130		
	acetone	$20 \mathrm{ug} / \mathrm{L}$	20	100	70	130		
	1,1-dichloroethene	$20 \mathrm{ug} / \mathrm{L}$	20	100	70	130		
	methylene chloride	21 ug/	20	106	70	130		
	carbon disulfide	$17 \mathrm{ug} / \mathrm{L}$	20	87	70	130		
	methyl t-butyl ether (MTBE)	21 ugh	20	105	70	130		
	trans-1,2-dichloroethene	$20 \mathrm{ug} / \mathrm{L}$	20	102	70	130		
	isopropyl ether (DIPE)	21 ugit	20	106	70	130		
	ethyl t-butyl ether (ETBE)	22 ug/L	20	108	70	130		
	1,1-dichloroethane	$20 \mathrm{ug} / \mathrm{L}$	20	101	70	130		
	t-butanol (TBA)	$83 \mathrm{ug} / \mathrm{L}$	100	83	70	130		
	2-butanone (MEK)	$17 \mathrm{ug} / \mathrm{L}$	20	84	70	130		
	2,2-dichloropropane	$19 \mathrm{ug} / \mathrm{L}$	20	95	70	130		
	cis-1,2-dichloroethene	$20 \mathrm{ug} / \mathrm{L}$	20	101	70	130		
	chloroform	$20 \mathrm{ug} / \mathrm{L}$	20	98	70	130		
	bromochloromethane	$20 \mathrm{ug} / \mathrm{L}$	20	102	70	130		
	tetrahydrofuran (THF)	$17 \mathrm{ug} / \mathrm{L}$	20	86	70	130		
	1,1,1-trichloroethane	17 ugh	20	85	70	130		
	1,1-dichloropropene	21 ug/L	20	106	70	130		
	t-amyl-methyl ether (TAME)	16 ugit	20	82	70	130		
	carbon tetrachloride	16 ugh	20	82	70	130		
	1,2-dichloroethane	$21 \mathrm{ug} / \mathrm{L}$	20	106	70	130		
	benzene	$23 \mathrm{ug} / \mathrm{L}$	20	113	70	130		
	trichloroethene	$21 \mathrm{ug} / \mathrm{L}$	20	104	70	130		
	1,2-dichloropropane	$20 \mathrm{ug} / \mathrm{L}$	20	102	70	130		
	bromodichloromethane	$20 \mathrm{ug} / \mathrm{L}$	20	100	70	130		
	1,4-dioxane	< $50 \mathrm{ug} / \mathrm{L}$	40	81				
	dibromomethane	$20 \mathrm{ug} / \mathrm{L}$	20	102	70	130		
	4-methyl-2-pentanone (MIBK)	16 ugh	20	79	70	130		
	cis-1,3-dichloropropene	$18 \mathrm{ug} / \mathrm{L}$	20	88	70	130		
	toluene	$21 \mathrm{ug} / \mathrm{L}$	20	103	70	130		
	trans-1,3-dichloropropene	$19 \mathrm{ug} / \mathrm{L}$	20	97	70	130		
	2-hexanone	$18 \mathrm{ug} / \mathrm{L}$	20	88	70	130		
	1,1,2-trichloroethane	21 ugit	20	106	70	130		
	1,3-dichloropropane	$22 \mathrm{ug} / \mathrm{L}$	20	109	70	130		
	tetrachloroethene	$22 \mathrm{ug} / \mathrm{L}$	20	111	70	130		
	dibromochloromethane	16 ug/	20	82	70	130		
	1,2-dibromoethane (EDB)	$18 \mathrm{ug} / \mathrm{L}$	20	91	70	130		
	chlorabenzene	$22 \mathrm{ug} / \mathrm{L}$	20	112	70	130		
	1,1,1,2-tetrachloroethane	$17 \mathrm{ug} / \mathrm{L}$	20	85	70	130		
	ethylbenzene	$23 \mathrm{ug} / \mathrm{L}$	20	113	70	130		
	m\&p-xylenes	$43 \mathrm{ug} / \mathrm{L}$	40	106	70	130		
	o-xylene	$22 \mathrm{ug} / \mathrm{L}$	20	108	70	130		
	styrene	$21 \mathrm{ug} / \mathrm{L}$	20	106	70	130		
	bromoform	19 ugil	20	97	70	130		
	isopropylbenzene	21 ugh	20	103	70	130		
	1,1,2,2-tetrachloroethane	21 ug/L	20	103	70	130		

Method QCID	Parameter Associated Sample	Result Units	Amt Added	\%R	Limit		RPD	RPD Limit
SW5030B8260B LCS0900247	1,2,3-trichloropropane	$23 \mathrm{ug} / \mathrm{L}$	20	114	70	130		
	n-propylbenzene	21 ugh	20	103	70	130		
	bromobenzene	$22 \mathrm{ug} / \mathrm{L}$	20	112	70	130		
	1,3,5-trimethylbenzene	$22 \mathrm{ug} / \mathrm{L}$	20	108	70	130		
	2-chlorotoluene	21 ug/	20	107	70	130		
	4-chlorotoluene	$22 \mathrm{ug} / \mathrm{L}$	20	110	70	130		
	tert-butylbenzene	$19 \mathrm{ug} / \mathrm{L}$	20	94	70	130		
	1,2,4-trimethylbenzene	$21 \mathrm{ug} / \mathrm{L}$	20	105	70	130		
	sec-butylbenzene	$20 \mathrm{ug} / \mathrm{L}$	20	100	70	130		
	1,3-dichlorobenzene	$23 \mathrm{ug} / \mathrm{L}$	20	115	70	130		
	4 -isopropyltoluene	21 ugh	20	105	70	130		
	1,4-dichlorobenzene	$22 \mathrm{ug} / \mathrm{L}$	20	112	70	130		
	1,2-dichlorobenzene	21 ug/	20	105	70	130		
	n -butylbenzene	$20 \mathrm{ug} / \mathrm{L}$	20	100	70	130		
	1,2-dibromo-3-chloropropane	$20 \mathrm{ug} / \mathrm{L}$	20	100	70	130		
	1,2,4-trichlorobenzene	$18 \mathrm{ug} / \mathrm{L}$	20	91	70	130		
	1,3,5-trichlorobenzene	$21 \mathrm{ug} / \mathrm{L}$	20	103	70	130		
	hexachlorobutadiene	$20 \mathrm{ug} / \mathrm{L}$	20	102	70	130		
	naphihalene	$23 \mathrm{ug} / \mathrm{L}$	20	117	70	130		
	1,2,3-trichlorobenzene	$20 \mathrm{ug} / \mathrm{L}$	20	102	70	130		
	dibromofluoromethane SUR	96%			78	114		
	toluene-D8 SUR	102 \%			88	110		
	4-bromofluorobenzene SUR	105%			86	115		

Method QCID	Parameter Associated Sample	Result Units	Amt Added	\%R	Limit		RPD	RPD Limit
SW5030B8260B LCSD0900247	dichlorodifluoromethane	$20 \mathrm{ug} / \mathrm{L}$	20	98	70	130	5	20
	chloromethane	$18 \mathrm{ug} / \mathrm{L}$	20	89	70	130	18	20
	vinyl chloride	$18 \mathrm{ug} / \mathrm{L}$	20	90	70	130	2	20
	bromomethane	$25 \mathrm{ug} / \mathrm{L}$	20	125	70	130	8	20
	chloroethane	21 ug/	20	107	70	130	16	20
	trichlorofluoromethane	$20 \mathrm{ug} / \mathrm{L}$	20	102	70	130	3	20
	diethyl ether	21 ug/L	20	106	70	130	0	20
	acetone	19 ug/L	20	96	70	130	4	20
	1,1-dichloroethene	$20 \mathrm{ug} / \mathrm{L}$	20	100	70	130	0	20
	methylene chloride	$22 \mathrm{ug} / \mathrm{L}$	20	110	70	130	4	20
	carbon disulfide	$18 \mathrm{ug} / \mathrm{L}$	20	88	70	130	1	20
	methyl t-butyl ether (MT8E)	$21 \mathrm{ug} / \mathrm{L}$	20	105	70	130	0	20
	trans-1,2-dichloroethene	$21 \mathrm{ug} / \mathrm{L}$	20	103	70	130	1	20
	isopropyl ether (DIPE)	$21 \mathrm{ug} / \mathrm{L}$	20	107	70	130	1	20
	ethyl t-butyl ether (ETBE)	23 ug/L	20	113	70	130	5	20
	1,1-dichloroethane	$20 \mathrm{ug} / \mathrm{L}$	20	99	70	130	2	20
	t-butanol (TBA)	84 ug/L	100	84	70	130	2	20
	2-butanone (MEK)	$17 \mathrm{ug} / \mathrm{L}$	20	83	70	130	2	20
	2,2-dichloropropane	$20 \mathrm{ug} / \mathrm{L}$	20	102	70	130	7	20
	cis-1,2-dichloroethene	$21 \mathrm{ug} / \mathrm{L}$	20	103	70	130	2	20
	chloroform	$20 \mathrm{ug} / \mathrm{L}$	20	98	70	130	0	20
	bromochloromethane	$21 \mathrm{ug} / \mathrm{L}$	20	103	70	130	1	20
	tetrahydrofuran (THF)	$18 \mathrm{ug} / \mathrm{L}$	20	88	70	130	2	20
	1,1,1-trichloroethane	$18 \mathrm{ug} / \mathrm{L}$	20	90	70	130	6	20
	1,1-dichloropropene	21 ug/L	20	106	70	130	0	20
	t-amyl-methyl ether (TAME)	$17 \mathrm{ug} / \mathrm{L}$	20	86	70	130	5	20
	carbon tetrachloride	18 ug/L	20	88	70	130	7	20
	1,2-dichloroethane	$21 \mathrm{ug} / \mathrm{L}$	20	106	70	130	0	20
	benzene	$23 \mathrm{ug} / \mathrm{L}$	20	113	70	130	0	20
	trichloroethene	$21 \mathrm{ug} / \mathrm{L}$	20	105	70	130	1	20
	1,2-dichloropropane	21 ugil	20	105	70	130	2	20
	bromodichloromethane	$20 \mathrm{ug} / \mathrm{L}$	20	102	70	130	2	20
	1,4-dioxane	< $50 \mathrm{ug} / \mathrm{L}$	40	83			2	20
	dibromomethane	$20 \mathrm{ug} / \mathrm{L}$	20	101	70	130	0	20
	4-methyl-2-pentanone (MIBK)	$16 \mathrm{ug} / \mathrm{L}$	20	79	70	130	0	20
	cis-1,3-dichloropropene	$18 \mathrm{ug} / \mathrm{L}$	20	92	70	130	5	20
	toluene	$21 \mathrm{ug} / \mathrm{L}$	20	103	70	130	0	20
	trans-1,3-dichloropropene	$20 \mathrm{ug} / \mathrm{L}$	20	102	70	130	6	20
	2-hexanone	$17 \mathrm{ug} / \mathrm{L}$	20	85	70	130	3	20
	1,1,2-trichloroethane	21 ugh	20	105	70	130	1	20
	1,3-dichloropropane	22 ug/L	20	109	70	130	0	20
	tetrachloroethene	23 ugh	20	115	70	130	4	20
	dibromochloromethane	17 ugh	20	86	70	130	6	20
	1,2-dibromoethane (EDB)	19 ug/L	20	97	70	130	6	20
	chlorobenzene	$23 \mathrm{ug} / \mathrm{L}$	20	115	70	130	2	20
	1,1,1,2-tetrachloroethane	$18 \mathrm{ug} / \mathrm{L}$	20	90	70	130	6	20
	ethylbenzene	$23 \mathrm{ug} / \mathrm{L}$	20	114	70	130	1	20
	m\&p-xylenes	$43 \mathrm{ug} / \mathrm{L}$	40	108	70	130	1	20
	0-xylene	$22 \mathrm{ug} / \mathrm{L}$	20	109	70	130	1	20
	styrene	$22 \mathrm{ug} / \mathrm{L}$	20	108	70	130	1	20
	bromoform	$20 \mathrm{ug} / \mathrm{L}$	20	100	70	130	3	20
	isopropylbenzene	$21 \mathrm{ug} / \mathrm{L}$	20	103	70	130	0	20
	1,1,2,2-tetrachloroethane	21 ug/L	20	103	70	130	1	20

Method QCID	Parameter Associated Sample	Result Units	Amt Added	\%R	Limit		RPD	RPD Limit
SW5030B8260B LCSD0900247	1,2,3-trichloropropane	$22 \mathrm{ug} / \mathrm{L}$	20	111	70	130	2	20
	n-propylbenzene	$21 \mathrm{ug} / \mathrm{L}$	20	105	70	130	2	20
	bromobenzene	$23 \mathrm{ug} / \mathrm{L}$	20	113	70	130	0	20
	1,3,5-rimethylbenzene	$22 \mathrm{ug} / \mathrm{L}$	20	111	70	130	3	20
	2-chlorotoluene	$22 \mathrm{ug} / \mathrm{L}$	20	111	70	130	3	20
	4-chlorotoluene	$22 \mathrm{ug} / \mathrm{L}$	20	108	70	130	2	20
	tert-butylbenzene	$20 \mathrm{ug} / \mathrm{L}$	20	100	70	130	6	20
	1,2,4-rimethylbenzene	$22 \mathrm{ug} / \mathrm{L}$	20	108	70	130	2	20
	sec-butylbenzene	$21 \mathrm{ug} / \mathrm{L}$	20	103	70	130	4	20
	1,3-dichlorobenzene	23 ug/L	20	117	70	130	2	20
	4-isopropyltoluene	22 ugh	20	109	70	130	4	20
	1,4-dichlorobenzene	23 ug/	20	114	70	130	1	20
	1,2-dichlorobenzene	$21 \mathrm{ug} / \mathrm{L}$	20	107	70	130	2	20
	n-butylbenzene	$21 \mathrm{ug} / \mathrm{L}$	20	103	70	130	3	20
	1,2-dibromo-3-chloropropane	$23 \mathrm{ug} / \mathrm{L}$	20	114	70	130	14	20
	1,2,4-trichlorobenzene	$17 \mathrm{ug} / \mathrm{L}$	20	86	70	130	6	20
	1,3,5-trichlorobenzene	$21 \mathrm{ug} / \mathrm{L}$	20	104	70	130	2	20
	hexachlorobutadiene	$22 \mathrm{ug} / \mathrm{L}$	20	109	70	130	6	20
	naphthalene	$22 \mathrm{ug} / \mathrm{L}$	20	112	70	130	4	20
	1,2,3-trichlorobenzene	$19 \mathrm{ug} / \mathrm{L}$	20	97	70	130	4	20
	dibromofluoromethane SUR	96 \%			78	114		
	toluene-D8 SUR	101 \%			88	110		
	4-bromofluorobenzene SUR	103 \%			86	115		

Method QCID	Parameter	Associated Sample	Result Units	Amt Added	\%R			RPD	RPD Limit
SW3510B8270C BLK1976	naphthalene		< $0.5 \mathrm{ug} / \mathrm{L}$						
	2-methylnaphthalene		< $0.5 \mathrm{ug} / \mathrm{L}$						
	acenaphthylene		< $0.5 \mathrm{ug} / \mathrm{L}$						
	acenaphthene		< $0.5 \mathrm{ug} / \mathrm{L}$						
	dibenzofuran		< $0.5 \mathrm{ug} / \mathrm{L}$						
	fluorene		< $0.5 \mathrm{ug} / \mathrm{L}$						
	phenanthrene		< $0.5 \mathrm{ug} / \mathrm{L}$						
	anthracene		< $0.5 \mathrm{ug} / \mathrm{L}$						
	fluoranthene		< $0.5 \mathrm{ug} / \mathrm{L}$						
	pyrene		< $0.5 \mathrm{ug} / \mathrm{L}$						
	benzo(a)anthracene		< $0.5 \mathrm{ug} / \mathrm{L}$						
	chrysene		< $0.5 \mathrm{ug} / \mathrm{L}$						
	benzo(b)fluoranthene		< $0.5 \mathrm{ug} / \mathrm{L}$						
	benzo(k)fluoranthene		< 0.5 ugh						
	benzo(a)pyrene		< 0.2 ugh						
	indeno(1,2,3-cd)pyrene		< 0.5 ugh						
	dibenzo(a,h)anthracene		< $0.5 \mathrm{ug} / \mathrm{L}$						
	benzo(g,h,i)perylene		< $0.5 \mathrm{ug} / \mathrm{L}$						
	2-fluorobiphenyl SUR		57%			43	116		
	o-terphenyl SUR		70 \%			33	141		
LCS1976	naphthalene		21 ug/L	40	52	40	140		
	2-methylnaphthalene		$21 \mathrm{ug} / \mathrm{L}$	40	52	40	140		
	acenaphthylene		$24 \mathrm{ug} / \mathrm{L}$	40	60	40	140		
	acenaphthene		$23 \mathrm{ug} / \mathrm{L}$	40	58	40	140		
	dibenzofuran		< $0.5 \mathrm{ug} / \mathrm{L}$						
	fluorene		25 ugil	40	62	40	140		
	phenanthrene		25 ugit	40	63	40	140		
	anthracene		24 ug/	40	61	40	140		
	fluoranthene		26 ug/L	40	65	40	140		
	pyrene		$29 \mathrm{ug} / \mathrm{L}$	40	73	40	140		
	benzo(a)anthracene		$29 \mathrm{ug} / \mathrm{L}$	40	71	40	140		
	chrysene		$28 \mathrm{ug} / \mathrm{L}$	40	70	40	140		
	benzo(b)fluoranthene		$29 \mathrm{ug} / \mathrm{L}$	40	72	40	140		
	benzo(k)fluoranthene		$24 \mathrm{ug} / \mathrm{L}$	40	61	40	140		
	benzo(a)pyrene		$25 \mathrm{ug} / \mathrm{L}$	40	64	40	140		
	indeno(1,2,3-cd)pyrene		22 ug/L	40	56	40	140		
	dibenzo(a ,h)anthracene		$25 \mathrm{ug} / \mathrm{L}$	40	62	40	140		
	benzo(g,h,i)perylene		28 ugh	40	71	40	140		
	2-fluorobiphenyl SUR		57%			43	116		
	o-terphenyI SUR		70 \%			33	141		

Method QCID	Parameter	Associated Sample	Result Units	Amt Added	\%R	Limit		RPD	RPD Limit
SW3510B8270C LCSD1976	naphthalene		$23 \mathrm{ug} / \mathrm{L}$	40	56	40	140	8	20
	2-methylnaphthalene		$22 \mathrm{ug} / \mathrm{L}$	40	56	40	140	7	20
	acenaphthylene		26 ug/L	40	65	40	140	9	20
	acenaphthene		24 ugh	40	61	40	140	5	20
	dibenzofuran		< $0.5 \mathrm{ug} / \mathrm{L}$						20
	fluorene		26 ugh	40	66	40	140	7	20
	phenanthrene		26 ugh	40	65	40	140	2	20
	anthracene		25 ug/	40	64	40	140	4	20
	fluoranthene		$26 \mathrm{ug} / \mathrm{L}$	40	64	40	140	0	20
	pyrene		$29 \mathrm{ug} / \mathrm{L}$	40	74	40	140	0	20
	benzo(a)anthracene		$28 \mathrm{ug} / \mathrm{L}$	40	71	40	140	1	20
	chrysene		$28 \mathrm{ug} / \mathrm{L}$	40	71	40	140	2	20
	benzo(b)ffiuoranthene		$28 \mathrm{ug} / \mathrm{L}$	40	69	40	140	3	20
	benzo(k)fluoranthene		25 ugh	40	62	40	140	2	20
	benzo(a)pyrene		$25 \mathrm{ug} / \mathrm{L}$	40	62	40	140	2	20
	indeno(1,2,3-cd)pyrene		22 ugh	40	56	40	140	1	20
	dibenzo(a,h)anthracene		$24 \mathrm{ug} / \mathrm{L}$	40	61	40	140	2	20
	benzo(g,h,i)perylene		28 ugh	40	70	40	140	1	20
	2-fluorobiphenyl SUR		59 \%			43	116		
	o-terphenyl SUR		66 \%			33	141		

Lab Number 16048
Batch QC Results
Prep Blank

Analyte	Sample ID \#	Result $(\mathrm{mg} / \mathrm{L})$	Reporting Limit $(\mathrm{mg} / \mathrm{L})$
Silver	ICB020309	<0.007	0.007
Arsenic	ICB020309	<0.008	0.008
Barium	ICB020309	<0.05	0.05
Cadmium	ICB020309	<0.005	0.005
Chromium	ICB020309	<0.05	0.05
Lead	ICB020309	<0.008	0.008
Selenium	ICB020309	<0.05	0.05

Laboratory Control Sample

Analyte	Sample ID \#	Result $(\mathrm{mg} / \mathrm{L})$
Silver	ICV020309	0.25
Arsenic	ICV020309	0.51
Barium	ICV020309	0.50
Cadmium	ICV020309	0.50
Chromium	ICV020309	0.49
Lead	ICV020309	0.50
Selenium	ICV020309	0.51

Sample Spike Data (MS)

Sample ID \#	Sample Result $(\mathbf{m g} / \mathrm{L})$	Spike Sample Result $(\mathbf{m g} / \mathrm{L})$	Spike Amount $(\mathrm{mg} / \mathrm{L})$	\%Recovery Control Limits $(75-125 \%)$	
Analyte	Sin048-01MS	<0.45	0.45	0.5	91
Silver	$16048-01 \mathrm{MS}$	<1.1	1.1	1.0	105
Arsenic	$16048-01 \mathrm{MS}$	<0.99	0.99	1.0	98
Barium	$16048-01 \mathrm{MS}$	<1.0	1.0	1.0	101
Cadmium	$16048-01 \mathrm{MS}$	<1	1.0	1.0	100
Chromium	$16048-01 \mathrm{MS}$	<1	1.0	1.0	100
Lead	$16048-01 \mathrm{MS}$	<1.1	1.1	1.0	106
Selenium					

[^0]: ${ }^{1}$ Environmental Site Assessment by LBG titled "NH Army National Guard Armory Site, Parcel ID U023-025-000, Peterborough, New Hampshire: Phase I Environmental Site Assessment," dated January 2008.

[^1]: ${ }^{2}$ Letter by RPF titled "Peterborough Readiness Center and Motor Vehicle Storage Building, Survey Findings" dated February 11, 2008.

[^2]: ${ }^{3}$ Plan by GZA titled "Quality Assurance Project Plan, New Hampshire ARMY, National Guard Armory, NHDES No. 199001027, EPA ID NHD986486082, Peterborough, New Hampshire," dated December 2008.

[^3]: ${ }^{4}$ Thermo Environmental Instruments, Organic Vapor Meter, equipped with a 10.6 electron volt lamp and calibrated to an isobutylene in air standard.
 ${ }^{5}$ GZA encountered the feed line associated with the current 3,000-gallon UST at the original MW-2 soil boring location. GZA moved locations and completed the MW-2 installation without refusal.
 ${ }^{6}$ Based on a modified Burmister soil classification system.

[^4]:

